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Why did we decide to organize a blind pKa prediction

challenge?

SAMPL5 logD challenge indicated the
impact of prediction of the ionization state

distribution on the accuracy of logD
predictions.
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Fig. 4 Our partition estimations from MM BAR (submission 38)
plotted against experiment. We have applied our QM based free
energy corrections (adiabatic/absolute scheme, submission 10),
shifting the predicted values towards more hydrophilic values. These
corrections account for multiple protomeric states and for ligand
ionization due to the presence of protonizable groups. These
corrections substantially reduce the RMSD and increase the correla-
tion of these predictions with respect to experimentally determined
values

Pickard, F. C. et al. Blind prediction of distribution in the SAMPL5 challenge with QM based protomer and pKa corrections. Journal of Computer-

Aided Molecular Design 30, 1087-1100 (2016).
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pKa predictions contribute to the errors in binding free

energy predictions.

Case 1: Failing to correct binding
free energy with pKa penalty
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AGbind = AGbind, LH+ + AGprot
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1.38 kcal/mol error to free energy
per 1 unit of error in pKa

Case 2: Failing to predict ligand
protonation state in the complex
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Modeling the wrong ionization state in
complex can cause severe errors.



Accurate prediction of pKas is a useful tool for computer
aided drug design and lead optimization.

During lead optimization pKa values guide
= |mproving target potency
= Reducing potency against undesired target
= Modulating solubility and lipophilicity

= |mproving ADME properties
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= conjugated systems and heterocycles



We selected fragment-like molecules with heterocycles
common in kinase inhibitors for SAMPLG6.

Starting point: ZINC15 kinase subset and anodyne compounds

Frequent heterocycles found in
FDA-approved kinase inhibitors

N
Murcko ring fragmentation /N /Nj /Nj z
| | | I
NS N N NS

pyridine pyrimidine quinazoline quinoline
N N N
Gy Ow (o
N =~ =~
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Other heterocycles in the SAMPLG6 set
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aminothiazole thiophene 1,3,4-thiadiazole 5-methylenethiazolidine-2,4-dione N



24 compounds are present in SAMPL6 pKa challenge
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In multiprotic compounds it is important to differentiate
between macroscopic and microscopic pKas.
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8.17 3.01 capture all
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Fraczkiewicz R. (2013) In Silico Prediction of lonization. In: Reedijk, J. (Ed.) Elsevier Reference Module in Chemistry, Molecular Sciences and Chemical
Engineering. Waltham, MA: Elsevier. 6
Rupp M. et al. Predicting the pKa of Small MoleculesCombinatorial Chemistry & High Throughput Screening, 2011, 14, 307-327.



Experimental pKa values for SAMPL6 were measured with

Sirius T3. Dorothy Levorse
Timothy Rhodes

Titration tub&as

In ceramic
sheath

UV sensor

= Method: UV-absorbance spectra based pKa measurement
= Measurement range: 2-12

= 24 small kinase inhibitor fragment-like molecules

= Temperature: 25°C

= |onic strength: 150 mM KClI solution

= 3independent replicates (from the same DMSO stock)



Absorbance

Percent species

UV-metric pKa measurements of multiprotic compounds lead

to determination of macroscopic pKa values.
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pKas of water insoluble compounds were determined by
extrapolation from multiple cosolvent experiments.

Apparent pKa is measured at 3 cosolvent concentrations: 30%, 40%, and 50% MeOH

Yasuda-Shedlovsky extrapolation
pKa 1: 0% Solvent at 25.0°C
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pKa is determined by Yasuda-Shedlovsky extrapolation to 0% cosolvent.

Acid/base assighment based on pKa shift with cosolvent does not provide reliable

evidence for assigning pKa values to ionizable groups, especially in multiprotic
compounds.

Avdeef, A. et al. PH-metric logP 11. pK a determination of water-insoluble drugs in organic solvent—water mixtures. Journal of pharmaceutical
and biomedical analysis 20, 631-641 (1999). 9



Suggestions for future pKa experimental data
collection

=  UV-metric pKa measurements with Sirius T3 do not provide any structural
information about microstates.

= Acid/base assighnment based on pKa shift with cosolvent is not reliable in
multiprotic compounds.

=  Monoprotic compounds should be prefered if UV-metric or potentiometric
methods for pKa measurements will be used.

=  Compound purity is critical for accuracy.
=  Compound solubility is the limiting factor for pKa measurements with Sirius T3.

= For future pKa challenges with multiprotic compounds, it is ideal to use
experimental methods that can measure microscopic pKas, such as NMR.
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Submission types and participation to pKa prediction
challenge

Type | - microscopic pKas and microstates

Predicting microscopic pKa values and related microstate structures.
32 submissions

Type Il - microstate populations as a function of pH

Predicting fractional microstate populations between pH 2 to 12 in 0.1 pH increments.
27 submissions

Type Il - macroscopic pKas

Predicting the value of macroscopic pKas between 2 and 12.
34 submissions
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Analysis of macroscopic pKa predictions requires mapping
of experimental pKas to predicted pKas.

Closest Method

= Each predicted pKa is matched to closest experimental pKa value (min absolute error).

= When more than one predicted pKa match to the same experimental pKa, only the
predicted pka that has the lowest absolute error is kept.

= Extra predicted or experimental pKas are ignored.

Experimental pKas Predicted pKas
2.15 0.5
9.58 1.84
11.02

Hungarian Method
= Experimental pKas and predicted pKas are matched following Hungarian algorithm.
= Optimum global assignment that minimizes linear sum of squared errors of all pairwise

matches.
Experimental pKas Predicted pKas

Kiril Lanevskij 2.15 >< 0.5
9.58 1.84
11.02
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Analysis of pKa predictions and future directions

Macroscopic pKa analysis results can be found in SAMPL6 GitHub repository:

https://github.com/MobleyLab/SAMPL6

— Experimental vs predicted pKa value correlation plots
— Error distribution plots for each molecule
— Performance statistics (RMSE, MAE, ME, R?, slope)

We will keep updating the SAMPL6 repository with:
* Additional performance criteria for pKa predictions
* Analysis of microscopic pKa values and microstate populations
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4 participants of the pKa challenge will present us their

perspectives.

NEXT

Samarjeet Prasad

(Type 1)

() Qiao Zeng

() Marvin Waldman

TOMORROW

Bogdan lorga

Submission ID
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Selecting kinase inhibitor-like compounds

Chemical and Availability Criteria

H H
H :<
« Tier1 compound >— H

« Availability of least 100 mg
» Cheaper compounds in logP bins are prioritized.

* Non-hazardous.
* Anodyne (PAINs and reactive groups removed)

* Atleast 1 pKain the interval 3 < pKa =< 11

Multiple pKa’s at least 1 log unit part in selected pKa interval. SMARTS: [n,0,c][c,n,0]cc
*  Minimum number of UV-chromophore unit: 8

« -1<XlogP <6

Fragment-like Drug-like

Number of rotatable bonds <3 *  Number of rotatable bonds < 8

* 150 = mw < 350 « 350 = mw <500
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pKas of water insoluble compounds were determined by
extrapolation from multiple cosolvent experiments.

Spectral Datz by pH
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pKa is determined by Yasuda-Shedlovsky
extrapolation to 0% cosolvent.

Acid/base assighnment based on pKa shift with
cosolvent does not provide reliable evidence
for assigning pKa values to ionizable groups,
especially in multiprotic compounds.
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Analysis of macroscopic pKa predictions

Overall performance of macroscopic pKa predictions
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