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Why did we decide to organize a blind pKa prediction 
challenge?

SAMPL5 logD challenge indicated the
impact of prediction of the ionization state
distribution on the accuracy of logD
predictions.

Pickard,	F.	C.	et	al.	Blind	prediction	of	distribution	in	the	SAMPL5	challenge	with	QM	based	protomer and	pKa corrections.	Journal	of	Computer-
Aided	Molecular	Design	30,	1087–1100	(2016).

cyclohexane
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pKa predictions contribute to the errors in binding free 
energy predictions.

Case	1:	Failing	to	correct	binding	
free	energy	with	pKa penalty
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1.38	kcal/mol error	to	free	energy	
per	1	unit	of	error	in	pKa

Case	2:	Failing	to	predict	ligand	
protonation	state	in	the	complex
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Modeling	the	wrong	ionization	state	in	
complex	can	cause	severe	errors.

ΔGbind,	L
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Accurate prediction of pKas is a useful tool for computer 
aided drug design and lead optimization. 

During	lead	optimization	pKa values	guide
§ Improving	target	potency	
§ Reducing	potency	against	undesired	target
§ Modulating	solubility	and	lipophilicity
§ Improving	ADME	properties

Predicting	pKas of	of	drug-like	compounds	are	
challenging	due	to

§ multiple	protonation	sites

§ conjugated	systems	and	heterocycles

2n
microstates
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We selected fragment-like molecules with heterocycles
common in kinase inhibitors for SAMPL6. 

Starting	point:		ZINC15	kinase	subset	and	anodyne compounds

Frequent	heterocycles found	in	
FDA-approved	kinase	inhibitors	

Murcko ring	fragmentation N

pyridine

N

N

quinazoline

N

quinoline

N

N

pyrimidine

NH
N

indazole
N

H
N

imidazole

NH
N

pyrazole

Other	heterocycles in	the	SAMPL6	set
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24 compounds are present in SAMPL6 pKa challenge 
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In multiprotic compounds it is important to differentiate 
between macroscopic and microscopic pKas. 

Fraczkiewicz R.	(2013)	In	Silico Prediction	of	Ionization.	In:	Reedijk,	J.	(Ed.)	Elsevier	Reference	Module	in	Chemistry,	Molecular	Sciences	and	Chemical	
Engineering.	Waltham,	MA:	Elsevier.
Rupp	M.	et	al.	Predicting	the	pKa of	Small	MoleculesCombinatorial Chemistry	&	High	Throughput	Screening,	2011,	14,	307-327.

Macroscopic	pKas

UV-metric	pKas
may	fail	to	
capture	all	
macroscopic	
pKas.

Microscopic	pKas

+2																			+1																		0																			-1
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Experimental pKa values for SAMPL6 were measured with 
Sirius T3.

§ Method:	UV-absorbance	spectra	based	pKa measurement
§ Measurement	range:	2-12	
§ 24	small	kinase	inhibitor	fragment-like	molecules	
§ Temperature:	25°C	
§ Ionic	strength:	150	mM KCl solution
§ 3	independent	replicates	(from	the	same	DMSO	stock)

Dorothy	Levorse
Timothy	Rhodes
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Pyridoxine	HCl

UV-metric pKa measurements of multiprotic compounds lead 
to determination of macroscopic pKa values. 
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pKas of water insoluble compounds were determined by 
extrapolation from multiple cosolvent experiments.

pKa is	determined	by	Yasuda-Shedlovsky extrapolation to	0%	cosolvent.

Acid/base	assignment	based	on	pKa shift	with	cosolvent does	not	provide	reliable	
evidence	for	assigning	pKa values	to	ionizable groups,	especially	in	multiprotic
compounds.

Apparent	pKa is	measured	at	3	cosolvent concentrations:	30%,	40%,	and	50%	MeOH

Avdeef,	A.	et	al.	PH-metric	logP 11.	pK a	determination	of	water-insoluble	drugs	in	organic	solvent–water	mixtures.	Journal	of	pharmaceutical	
and	biomedical	analysis	20,	631–641	(1999). 9



Suggestions for future pKa experimental data 
collection

§ For	future	pKa challenges	with	multiprotic compounds,	it	is	ideal	to	use	
experimental	methods	that	can	measure	microscopic	pKas,	such	as	NMR.

§ UV-metric	pKa measurements	with	Sirius	T3	do	not	provide	any	structural	
information	about	microstates.

§ Monoprotic compounds	should	be	prefered if	UV-metric	or	potentiometric	
methods	for	pKa measurements	will	be	used.	

§ Acid/base	assignment	based	on	pKa shift	with	cosolvent is	not	reliable	in	
multiprotic compounds.

§ Compound	purity	is	critical	for	accuracy.

§ Compound	solubility	is	the	limiting	factor	for	pKa measurements	with	Sirius	T3.
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Type	I	- microscopic	pKas and		microstates
Predicting	microscopic	pKa values	and	related	microstate	structures.

32	submissions

Type	II	- microstate	populations	as	a	function	of	pH
Predicting		fractional	microstate	populations	between	pH	2	to	12	in	0.1	pH	increments.

27	submissions

Type	III	- macroscopic	pKas
Predicting	the	value	of		macroscopic	pKas between	2	and	12.

34	submissions

Submission types and participation to pKa prediction 
challenge 
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Analysis of macroscopic pKa predictions requires mapping  
of experimental pKas to predicted pKas.

Closest	Method
§ Each	predicted	pKa is	matched	to	closest	experimental	pKa value	(min	absolute	error).
§ When	more	than	one	predicted	pKa match	to	the	same	experimental	pKa,	only	the	

predicted	pka that	has	the	lowest	absolute	error	is	kept.
§ Extra	predicted	or	experimental	pKas are	ignored.
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Hungarian	Method
§ Experimental	pKas and	predicted	pKas are	matched	following	Hungarian	algorithm.
§ Optimum	global	assignment	that	minimizes	linear	sum	of	squared	errors	of	all	pairwise	

matches.

Kiril Lanevskij
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Overall performance of macroscopic pKa predictions

Submission	ID

RMSE	values	span	
the	range	of	0.7-5	
pKa units.
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Analysis of pKa predictions and future directions

Macroscopic	pKa analysis	results	can	be	found	in	SAMPL6	GitHub repository:

https://github.com/MobleyLab/SAMPL6

– Experimental	vs predicted	pKa value	correlation	plots
– Error	distribution	plots	for	each	molecule
– Performance	statistics	(RMSE,	MAE,	ME,	R2,	slope)

We	will	keep	updating	the	SAMPL6	repository	with:
• Additional	performance	criteria	for	pKa predictions
• Analysis	of	microscopic	pKa values	and	microstate	populations
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4 participants of the pKa challenge will present us their 
perspectives.

Submission	ID
15

Qiao Zeng

NEXT
Samarjeet Prasad
(Type	I)
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Bogdan Iorga
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Chemical and Availability Criteria

Fragment-like Drug-like

• Tier1 compound
• Availability of least 100 mg
• Cheaper compounds in logP bins are prioritized.
• Non-hazardous.
• Anodyne (PAINs and reactive groups removed)

• At least 1 pKa in the interval 3 ≤ pKa ≤ 11
• Multiple pKa’s at least 1 log unit part in selected pKa interval.
• Minimum number of UV-chromophore unit: 8 
• -1 < XlogP < 6

Number of rotatable bonds ≤ 3
• 150 ≤ mw < 350

• Number of rotatable bonds ≤ 8
• 350 ≤ mw ≤ 500

SMARTS: [n,o,c][c,n,o]cc

Selecting kinase inhibitor-like compounds
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pKas of water insoluble compounds were determined by 
extrapolation from multiple cosolvent experiments.

50%	MeOH

40%	MeOH

30%	MeOH

pKa is	determined	by	Yasuda-Shedlovsky
extrapolation to	0%	cosolvent.

Acid/base	assignment	based	on	pKa shift	with	
cosolvent does	not	provide	reliable	evidence	
for	assigning	pKa values	to	ionizable groups,	
especially	in	multiprotic compounds.
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Analysis of macroscopic pKa predictions
Overall performance of macroscopic pKa predictions
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