A Pose Prediction Approach based on Ligand 3D Shape Similarity: Lessons learned in D3R challenge

Ashutosh Kumar

Research Scientist Structural Bioinformatics Team, Division of Structural and Synthetic Biology, Centre for Life Science Technologies RIKEN, Yokohama, Japan

Ligand 3D Shape Similarity

- Ligand 3D shape similarity has been routinely used as sole virtual screening approach or in combination with other structure based methods such as molecular docking.
- □ Other utilities in drug discovery include use as ligand scoring approach

PoPSS: Pose Prediction using Shape Similarity in D3R GC1

What did we learn in D3R GC1

- Selection of right receptor conformation is very important in accurately predicting binding poses
- Receptor conformation suitable for one chemotype may not be suitable for others

- Available shape similarity correlates
 with pose prediction performance
- Poses can be reliably predicted if maximum available shape similarity is more than 1.4 TanimotoCombo

- Predicted pose scored using Chemgauss4 scoring function
- Scoring performance was very bad
- Random

Coefficient	HSP90	MAP4K4
Pearson	0.16	0.05
Kendall Tau	0.10	0.02

Crystal (green) v/s Predicted (magenta) predicted (magenta) v/s template(cyan)

- No ligand sampling after placing the conformation
- No rewards for forming good interactions
- No penalties for bad interactions

Cross-docking based virtual screening pipeline (CDVS)

- □ Evaluated in D3R Grand Challenge 2
- Involved prediction of poses and potency of farnesoid X receptor (FXR) ligands.
- Stage 1: Pose prediction for 36 ligands (FXR-1-FXR-36)
- Stage 1: Affinity prediction or ranking for 102
 FXR ligands
- Stage 2: Affinity prediction or ranking for 102
 FXR ligands utilizing crystal information from stage 1

Cross-docking based virtual screening pipeline (CDVS) in D3R

Cross-docking based virtual screening pipeline (CDVS): Virtual screening performance

Scores	D3R GC2 Phase 1 value	D3R GC2 Phase 1 Rank/ Participating groups
AUC (95 % confidence interval) (%)	81.3 (72.3 – 90.4)	4/57
Spearman's rho (ρ) (standard error)	0.59 (0.07)	8/57
Kendall's tau (τ) (standard error)	0.40 (0.05)	8/57

7

What did we learn in D3R Grand Challenge 2

D3R Grand Challenge 3

≻Mega challenge

- ➢ Five subchallenge
 - Cathepsin S: Subchallenge 1, Pose prediction, ranking, FEP
 - VEGFR2
 - JAK2 SC2 Subchallenge 2, Ranking, selectivity
 - P38-α
 - JAK2 SC3: Subchallenge 3, Ranking, activity cliff
 - TIE2: Subchallenge 4, Ranking, activity cliff
 - ABL1: Subchallenge 5, Effect of mutation on binding affinities
- ➤Subchallenge 1
 - Cathepsin S
 - Pose prediction, ranking and FEP
 - Dataset: 26 crystal structures, 136 compound affinities
 - Pose prediction of 24 compounds and affinity prediction or ranking of 136 compounds

Pose Prediction methods used in D3R Grand Challenge 3

Pose prediction performance (PoPSS)

Pose prediction performance (CDVS)

Pose prediction performance (PoPSS-Lite)

D3R GC3 Compounds

Improved/Deteriotated	Number
Improved	14/24
Deteriorated	10/24
Improved by 0.5 ${ m \AA}$ RMSD	7/24
Deteriorated by 0.5 RMSD	3/24

Comparison of three methods in D3R GC3

PoPSS	CDVS	PoPSS-Lite
Poses can be predicted with relative accuracy	Scoring/Ranking performance is better	Poses can be predicted with relative accuracy
Method generates several poses that are ranked by scoring function	Ligand 3D shape similarity is only used in suitable receptor selection	Only one pose per ligand, so no scoring problem
Occasionally, pose closest to native structure was not the top scoring one		

Pose prediction comparison in D3R GC3

Summary and lessons learned for future D3R

- Ligand 3D shape similarity can be successfully employed to improve pose prediction performanc
- □ Shape similarity based receptor selection has advantages over 2D similarity based receptor selection
- Current implementation requires at least one suitable co-crystal ligand. Future development will explore the ligands from homologous proteins and homologous protein pockets to improve pose prediction
- Generation of ligand conformations is critical for success and needs improvement as some bioactive conformation could not be generated
- □ Scoring performance of PoPSS and PoPSS-Lite needs improvement

Thank you for your attention

Acknowledgements:

D3R Organizers Kam Zhang, Team leader Aditya Padhi Dileep Vijayan Matej Janezic Venkatakutu H. Nidamarthi RIKEN D3R community

