pKa prediction on the SAMPL6 dataset — Lessons learned —

<u>Bogdan I. Iorga, Edithe Selwa</u> Institut de Chimie des Substances Naturelles, CNRS Gif-sur-Yvette, France

> Oliver Beckstein, Ian Kenney Arizona State University Phoenix, AZ

SAMPL6 pKa challenge dataset and requirements

Choice of the method (I): Constant pH molecular dynamics (CpHMD)

- Our previous participations to SAMPL challenges [1-3]: free energy calculations using MD simulations, with MDPOW (<u>https://github.com/Becksteinlab/MDPOW</u>) and OPLS-AA force field
 - At first sight, CpHMD looks very interesting
 - provides easily populations for microstates
 - implemented and thoroughly tested in AMBER for protein residues
 - CpHMD-related parametrization of all microstates in GAFF/AMBER: huge endeavor and missing expertise in our team
 - O need for a reference compound with known experimental pKa value: blocking
 - I. Beckstein, O.; Iorga, B.I. JCAMD 2012, 26, 635-645.
 - 2. Beckstein, O.; Fourrier, A.; Iorga, B.I. JCAMD 2014, 28, 265-276.
 - 3. Kenney, I.M.; Beckstein, O.; Iorga, B.I. JCAMD **2016**, *30*, 1045-1058.

Choice of the method (II): Free energy calculations using non-equilibrium (fast-growth)

- Protocol developed in our group based on PMX [4] and used in our participation to D3R GC2 [5] and GC3 for computing relative protein-ligand affinities
- Possibility of computing relative free energies for transformations involving a change in the overall charge of the molecule

4. Gapsys, V.; Michielssens, S.; Seeliger, D.; de Groot, B.L. *J. Comput. Chem.* **2015**, 36, 348-354. 5. Selwa, E.; Elisée, E.; Zavala, A.; Iorga, B.I. *JCAMD* **2018**, 32, 273-286.

Free energy calculations using fast-growth molecular dynamics -pKa prediction -p

relative pKa values for all microstates – coupling with a SINGLE reference compound with known experimental value provides absolute pKa values for all microstates – general method

D3R/SAMPL Workshop, San Diego, 22-23 February 2018

Free energy calculations using fast-growth molecular dynamics -pKa prediction -pKa

absolute pKa values for all microstates – coupling every microstate with a reference compound with known experimental value – simple systems – probably better in terms of error propagation, but depending more on the accuracy of pKa experimental values

D3R/SAMPL Workshop, San Diego, 22-23 February 2018

CMIS

Protocol for non-equilibrium (fast-growth) simulations

Step 1: Generation of hybrid topology

Step 2: Conformational sampling using equilibrium MD

Step 3: Structure morphing using non-equilibrium MD

Step 4: Free energy estimation

- Force field: mainly OPLS-AA and GAFF/AMBER
- Ligand parametrization: MOL2FF (OPLS-AA) and AmberTools (GAFF/AMBER)

Domański, J.; Beckstein, O.; Iorga, B. I., Ligandbook – an online repository for small and drug-like molecule force field parameters. *Bioinformatics* **2017**, *33*, 1747-1749 (https://ligandbook.org).

- Generation of hybrid topologies: in house scripts
- MD simulations: Gromacs
- Analysis: PMX [4]

4. Gapsys, V.; Michielssens, S.; Seeliger, D.; de Groot, B.L. J. Comput. *Chem.* **2015**, *36*, 348-354.

Selwa, E.; Elisée, E.; Zavala, A.; Iorga, B.I. JCAMD 2018, 32, 273-286.

Free energy calculations using fast-growth molecular dynamics -- intrinsic pKa prediction error --

Transformation	Force field	ΔΔG (kJ/mol)	
phenolate/phenol	OPLS-AA	-4.65 ± 1.46	
benzimidazolium/benzimidazole	OPLS-AA	0.61 ± 0.48	
SMI5_micro001/SMI5_micro004	OPLS-AA	-3.56 ± 0.45	SM15
SMI5_micro003/SMI5_micro002	OPLS-AA	32.77 ± 0.43	00
SM20_micro003/SM20_micro004	OPLS-AA	2.50 ± 1.06	OH
SM22_micro001/SM22_micro004	OPLS-AA	15.57 ± 2.75	I N
SM22_micro002/SM22_micro001	OPLS-AA	0.05 ± 0.55	
SM22_micro002/SM22_micro003	OPLS-AA	-2.63 ± 1.20	
SM22_micro003/SM22_micro004	OPLS-AA	5.39 ± 1.88	SM22

Free energy calculations using fast-growth molecular dynamics — microscopic pKa prediction —

Transformation	Reference	Force field	∆∆G (kJ/mol)
SMI5_micro002/SMI5_micro004	phenolate/phenol	GAFF/AMBER	227.06 ± 0.5 l
SMI5_micro003/SMI5_micro001	phenolate/phenol	GAFF/AMBER	370.85 ± 0.5 l
SM22_micro001/SM22_micro004	phenolate/phenol	GAFF/AMBER	400.28 ± 0.44
SM22_micro002/SM22_micro001	pyridine/pyridinium	GAFF/AMBER	442.05 ± 0.39
SM22_micro002/SM22_micro003	phenolate/phenol	GAFF/AMBER	241.93 ± 0.58
SM22_micro003/SM22_micro004	pyridine/pyridinium	GAFF/AMBER	623.25 ± 0.39

Predictions not submitted.

D3R/SAMPL Workshop, San Diego, 22-23 February 2018

CMrs

Free energy calculations using fast-growth molecular dynamics — microscopic pKa prediction —

Transformation	Reference	Force field	ΔΔG (kJ/mol)
SMI5_micro002/SMI5_micro004	phenolate/phenol	OPLS-AA	-8.45 ± 2.15
SMI5_micro003/SMI5_micro001	phenolate/phenol	OPLS-AA	-10.03 ± 2.26
SMI5_micro001/SMI5_micro004	benzimidazolium/benzimidazole	OPLS-AA	100.81 ± 0.40
SMI5_micro003/SMI5_micro002	benzimidazolium/benzimidazole	OPLS-AA	116.08 ± 0.42
SM20_micro003/SM20_micro004	phthalimidate/phthalimide	OPLS-AA	911.67 ± 1.28
SM22_micro001/SM22_micro004	phenolate/phenol	OPLS-AA	204.15 ± 2.18
SM22_micro002/SM22_micro001	pyridine/pyridinium	OPLS-AA	227.31 ± 0.47
SM22_micro002/SM22_micro003	phenolate/phenol	OPLS-AA	141.45 ± 1.36
SM22_micro003/SM22_micro004	pyridine/pyridinium	OPLS-AA	289.16 ± 0.83
ОН			

$A \rightarrow AH^+$ $RH^+ \rightarrow$

Predictions not submitted.

OH

RH⁺→R

Choice of the method (III): DFT calculations with correction for systematic errors

- Protocol described in [6] using Gaussian09:
 - geometry optimization B3LYP/6-311+G(d,p) 5d : $E_{(g)}$
 - vibrational frequency calculation B3LYP/6-311+G(d,p) 5d: $G^{0}_{(g)}$
 - single-point energy calculation CPCM: $E_{(g)} + \Delta G_{solv}^0$
 - G*(H⁺(s)): -272.2 kcal/mol (literature value)

$$pK_{a} = \Delta G_{a}^{*}/RT\ln(10) \qquad \Delta G_{a}^{*} = G^{*}\left(A_{(s)}^{-}\right) + G^{*}\left(H_{(s)}^{+}\right) - G^{*}\left(HA_{(s)}^{-}\right)$$

- χ Values computed for a reference dataset (38 simple inorganic and organic compounds with known experimental pKa values) and for all microstates. 💢 Computing time: between <1 min and 7 hours on a 8-core machine
- **X** For reference compounds:

$$\Delta G_{corr} = RTIn(10) [pKa(exp) - pKa(calc)]$$

6. Muckerman, J.T.,;Skone, J.H.; Ning, M.;Wasada-Tsutsui, Y. Biochim. Biophys. Acta 2013, 1827, 882-891.

Reference dataset

Acid (neutral)	Base (negative)	рКа	Acid (positive)	Base (neutral)	рКа
nitric acid	nitrate	-1.40	anilinium	aniline	4.62
methanol	methanolate	15.54	4–nitro anilinium	4-nitro aniline	0.98
trifluoroethanol	trifluoroethanolate	12.43	4-bromo anilinium	4-bromo aniline	3.89
hexafluoroisopropanol	hexafluoroisopropanolate	9.30	4-methoxy anilinium	4-methoxy aniline	5.36
nonafluorotertbutanol	nonafluorotertbutanolate	5.40	2,5-dichloro anilinium	2,5-dichloro aniline	1.53
acetic acid	acetate	4.76	pyridinium	pyridine	5.24
nitro acetic acid	nitro acetate	1.68	3-nitro pyridinium	3-nitro pyridine	0.81
phthalimide	phthalimidine	8.30	2-chloro pyridinium	2-chloro pyridine	0.49
uracil	uracil anion	9.50	4-cyano pyridinium	4-cyano pyridine	1.86
sulfuric acid	hydrosulfate	-3.00	2,4,6-collidinium	2,4,6-collidine	7.33
benzenesulfonic acid	benzenesulfonate	-2.80	2,6-dimethyl pyridinium	2,6-dimethyl pyridine	6.70
methanesulfonic acid	methanesulfonate	-1.90	4-dimethylamino pyridinium	4-dimethylamino pyridine	9.60
trifluoroacetic acid	trifluoroacetate	0.23	benzylammonium	benzylamine	9.30
formic acid	formate	3.77	triethylammonium	triethylamine	10.72
benzoic acid	benzoate	4.21	pyrrolidinium	pyrrolidine	11.27
ethanol	ethanolate	15.90	guanidinium	guanidine	13.60
isopropanol	isopropanolate	17.10	hydrazinium	hydrazine	8.12
oxalic acid	oxalate	1.38			
phosphoric acid	dihydrophosphate	2.15			
phenol	phenolate	9.95			
4-nitro phenol	4-nitro phenolate	7.14			

CMrs

Reference dataset: global linear regression — correction for a systematic error—

pKa (exp)

y = 3.7368x + 2.7506 R² = 0.97388

D3R/SAMPL Workshop, San Diego, 22-23 February 2018

Cn

Reference dataset: linear regression for two separate datasets — correction for a systematic error —

Neutral acids

y = 3.7262x + 4.6539 $R^2 = 0.97468$

y = 3.7368x + 2.7506 $R^2 = 0.97388$

 $R^2 = 0.98273$

y = 3.7296x + 1.3025

D3R/SAMPL Workshop, San Diego, 22-23 February 2018

Cn

pKa prediction for the SAMPL6 dataset

- The same protocol applied to all microstates
- Two types of corrections applied: either global or according to the charge of the acid form \Rightarrow two separate submissions
- Global correction expected to be worse than separate corrections
 - Type I predictions submitted for all compounds
 - Type II and type III predictions submitted only for SM15, SM20 and SM22.

Compound	pKa experimental	pKa predicted (global correction)	pKa predicted (separate corrections)
SM15	4.70 ± 0.01	5.21	6.14
	8.94 ± 0.01	11.41	10.64
SM20	5.70 ± 0.03	8.34	7.58
SM22	2.40 ± 0.02	1.31	2.02
	7.43 ± 0.01	7.93	7.41
RMSE		I.72 (35bdm)	I.32 (p0jba)

Macroscopic pKa from microstates

• Input: relative free energies between micro states $1 \le k \le M$

$$\Delta G_{kl} = G_k - G_l$$
Note: we discuss free energies,
but we can easily convert

but we can easily convert $\beta = \frac{1}{kT}$ $pK_a = \beta \Delta G / \ln 10$

• Free energy of micro state k (relative to arbitrary reference state k=1):

$$\Delta G_k = G_k - G_1$$

- ΔG_k can be computed from sums of ΔG_{mn} that connect state 1 and state *k*.
- "Macroscopic" variable: number of protons *N*, with *N_k* the number of protons in state *k*.
- $\delta_{Nk,N}$ is an "indicator" to pick out states with N protons

Macroscopic pKa from microstates

 Free energy difference between two macro states N and N-1 (i.e., adding one proton)

$$\beta \Delta G_{N,N-1} = -\ln \left[\frac{\sum_{k=1}^{M} \exp(-\beta \Delta G_k) \delta_{N_k,N}}{\sum_{k=1}^{M} \exp(-\beta \Delta G_k) \delta_{N_k,N-1}} \right]$$

 Free energy difference for protonation reaction (taking into account hydration free energy of the proton)

$$A^- + H^+ \rightleftharpoons HA$$

$$\Delta G = \Delta G_{N,N-1} - \Delta G_{hyd}(H^+)$$

• Effective (or "macroscopic" pKa):

Concluding remarks

- Approaches involving QM and QSPR methods seem to be currently the best options for computing pKa values, in terms of speed and accuracy (method dependent).
- MD simulations (free energy calculations) represent an interesting alternative, for the moment hampered by difficulties in parametrization of species involved, the computing time required and the quality of force field parameters.
- In the tradition of SAMPL challenges, after hydration free energies and partition coefficients, pKas have a huge potential in the improvement of currently available force fields.

Acknowledgements

D3R/SAMPL organizers

ICSN, CNRS, Gif-sur-Yvette, France Edithe SELWA Agustin ZAVALA Eddy ELISEE Ludovic CHAPUT Hristo NEDEV

Pascal RETAILLEAU

Arizona State University

Oliver BECKSTEIN Ian KENNEY

Max Planck Institute for Biophysical Chemistry, Göttingen, Germany Bert DE GROOT (PMX)

ANR-10-LABX-33

Campus Paris Saclay

FONDATION DE COOPERATION SCIENTIFIQUE

SATT. PARIS-SACLAY

