MD Simulation in Pose Refinement and Scoring Using AMBER Workflows

Yuan Hu (On behalf of Merck D3R Team) D3R Grand Challenge 2 Webinar Department of Chemistry, Modeling & Informatics Merck Research Laboratories, Merck & Co., Inc. March 27, 2017

Outline

Overview of the D3R Predictions from Merck

- Today just the Stage 1 results
- Merck Team & Result Ranking

Overall Pose Prediction and Scoring Approach

- Structure Preparation & Docking
- AMBER Workflows for Pose Refinement & Ranking

Case Study & Lessons Learned

- Ranking with Ensemble-based MD-MMGBSA
- Pose Exploration with MD

Acknowledgement Merck D3R Team

Modeling

- Ying-Duo Gao
- Xavier Fradera
- Yuan Hu
- Andreas Verras
- Deping Wang
- Hongwu Wang
- James Fells
- Kira Armacost
- Alejandro Crespo
- Brad Sherborne

Informatics

- Huijun Wang
- Zhengwei Peng
- Robert Sheridan

Motivation

- > To refine and share our best practices
- > To be engaged in the scientific community
- To better understand the capability of sciences in industry & academia

Overall conclusion: MD improves pose prediction and ranking

Mean RMSD of Top Scoring Poses

Overall conclusion: MD improves pose prediction and ranking

Mean RMSD of Top Scoring Poses

Glide Ensemble Docking & AMBER workflows Completely automated

Public

. Hu, B. Sherborne, Z. Guo, et al.. "How to Obtain Reliable and Reproducible MMGB Results?" manuscript in preparation.

Glide Ensemble Docking & AMBER workflows Completely automated

Public

11

Glide Ensemble Docking & AMBER workflows **Completely automated**

manuscript in preparation.

Good template is important for docking... Similarity matters

2D Similarity of closest template ligand in ensemble of complexes

Good template is important for docking... Similarity matters

2D Similarity of closest template ligand in ensemble of complexes

(descriptor: ECFP6)

Good template is important for docking... Similarity matters

2D Similarity of closest template ligand in ensemble of complexes

(descriptor: ECFP6)

Question 1

Can MD be used to refine docking pose?

Pose refinement with MD

Case Study-success: FXR_3 Ligand interactions optimized through MD

Ligand moves to create stable H-bond

Case Study-success: FXR_3 Ligand interactions optimized through MD

Pose - RMSD - Compound: FXR_3 - Best

Public

Receipt ID

19

Green bar indicates your predictions (requires login)

Case Study-success: FXR_10 Protein optimized through MD

MD reorients the Asn to make H-bond contact

Case Study-success: FXR_10 Protein optimized through MD

MD reorients the Asn to make H-bond contact

Case Study-success: FXR_10 Protein optimized through MD

Pose - RMSD - Compound: FXR_10 - Best

Receipt ID

Green bar indicates your predictions (requires login)

Case Study-failure: FXR_15 MD workflow can't rescue reversed pose

- The docked pose has a reverse direction comparing to x-ray
- ► Hard to refine the structure with MD...

RMSD 9.37 Å

RMSD 8.83 Å

Case Study-failure: FXR_15 MD workflow can't rescue reversed pose

Pose - RMSD - Compound: FXR_15 - Best

Case Study-failure: FXR_18 MD workflow can't address very large protein movements

Protein conformation change

Case Study-failure: FXR_18 MD workflow can't address very large protein movements

Pose - RMSD - Compound: FXR_18 - Best

Receipt ID

Pale color indicates an incomplete set of predictions Green bar indicates your predictions (requires login)

Lesson learned from previous D3R challenge: "Explicit solvent free energy methods have not yet outperformed faster scoring methods in blinded protein-ligand affinity predictions."

-D3R website (Posted October 11, 2016) https://drugdesigndata.org/about/what-we-have-learned

Question 2

How does MD-MMGBSA perform in ligand scoring?

MD-MMGBSA improves on docking scores

Summary

Lessons

- Ensemble docking performs well in pose prediction & ranking, if there are suitably close protein complexes available
- MD maintains or refines docking poses (protein and ligand) and extends the limit of prediction
 - MD can't refine challenging poses
- Ensemble-based MD-MMGBSA ranking improves on docking scores
- Teamwork broke the challenge down to manageable portions

Next

- AMBER MD-MMGBSA to AMBER TI
- CPU to GPU

Thank You!

Pose exploration with MD Multiple studies show that the low energy snapshots correlate with best pose prediction

*average energy of the 10 lowest energy snapshots for each trajectory of 22 MD simulations differed by the initial position.

Onufriev, A.; Bashford, D.; Case, D. Proteins, 2004, 55, 383-394.

Hou, et al. J Comput Chem. 2011 Apr 15;32(5):866-77

