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Outline 
► Overview of the D3R Predictions from Merck 

• Today just the Stage 1 results 

• Merck Team & Result Ranking 

 

► Overall Pose Prediction and Scoring Approach 
• Structure Preparation & Docking 

• AMBER Workflows for Pose Refinement & Ranking 

 

► Case Study & Lessons Learned 
• Ranking with Ensemble-based MD-MMGBSA 

• Pose Exploration with MD 
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Motivation 
 To refine and share our best practices 
 To be engaged in the scientific community 
 To better understand the capability of 

sciences in industry & academia 
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Literature search 
Data mining from PDB 

and  CHEMBL 

 
Structure Preparation 

 
 
 
 

Schrodinger’s ligprep/prepwizard  

Step 1: preparation as a team 

102 D3R dataset 

Overall Approach for Stage 1 
 

(Protomer/Tautomer, fill missing loop) 
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 Can MD be used to refine docking pose? 
 How does MD-MMGBSA perform in ranking? 

Step 1: preparation as a team 

Step 2: docking experiments 

Step 3: MD-MMGBSA 

102 D3R dataset 

Overall Approach for Stage 1 
 

MD simulations using 
multiple replicates 

(Protomer/Tautomer, fill missing loop) 
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Overall conclusion: 
MD improves pose prediction and ranking 
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Glide Ensemble Docking & AMBER workflows 
Completely automated 
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Ligand/Protein 
Structure Preparation 

Glide XP 
Ensemble Docking 

36 ligands x40 templates =1,440 

Pose selection 
• Rank by score 
• rmsd >= 1.0 A to 

previously selected 
pose to ensure diversity 

*Workflow was validated 
before on 40 native ligands 

Ensemble Docking 

*Workflow was validated in large data sets. 
Y. Hu, B. Sherborne, Z. Guo, et al.. “How to Obtain Reliable and Reproducible MMGBSA 

Results?” manuscript in preparation. 

Top Scoring Pose 

AMBER MD-MMGBSA workflows 
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Pose Selection 



Good template is important for docking… 
Similarity matters 
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2D Similarity of closest template ligand in ensemble of complexes 
(descriptor: ECFP6) 
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Question 1 

Can MD be used to refine docking pose? 
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Pose refinement with MD 
 

17 
Docking Pose RMSD to X-ray Crystal (Å) 
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Crystal Structure  Docking Pose MD refinement 

Case Study-success: FXR_3 
Ligand interactions optimized through MD 
► Ligand moves to create stable H-bond 
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RMSD 2.00 Å RMSD 0.92 Å 



Case Study-success: FXR_3 
Ligand interactions optimized through MD 
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Case Study-success: FXR_10 
Protein optimized through MD 
► MD reorients the Asn to make H-bond contact 
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Crystal Structure  Docking Pose MD refinement 
RMSD 2.26 Å RMSD 1.41 Å 



Case Study-success: FXR_10 
Protein optimized through MD 
► MD reorients the Asn to make H-bond contact 
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Crystal Structure  Docking Pose MD refinement 
RMSD 2.26 Å RMSD 1.41 Å 



Case Study-success: FXR_10 
Protein optimized through MD 
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Case Study-failure: FXR_15 
MD workflow can’t rescue reversed pose 
► The docked pose has a reverse direction comparing to x-ray 

► Hard to refine the structure with MD… 
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Crystal Structure  Docking Pose MD refinement 

RMSD 8.83 Å RMSD 9.37 Å 



Case Study-failure: FXR_15 
MD workflow can’t rescue reversed pose 
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Case Study-failure: FXR_18 
MD workflow can’t address very large protein movements 

► Protein conformation change 
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Chain opened up in template 
Protein RMSD 2.59 Å 

Crystal Structure  
Docking Template 

MD refinement 

Ligand RMSD to X-ray 
Docking: 9.36 Å 
MD: 10.32 Å 



Case Study-failure: FXR_18 
MD workflow can’t address very large protein movements 
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Question 2 

How does MD-MMGBSA perform in ligand 
scoring? 
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Lesson learned from previous D3R challenge: 
“Explicit solvent free energy methods have not yet outperformed faster 

scoring methods in blinded protein-ligand affinity predictions.” 
-D3R website (Posted October 11, 2016) 

https://drugdesigndata.org/about/what-we-have-learned 
 

https://drugdesigndata.org/about/what-we-have-learned
https://drugdesigndata.org/about/what-we-have-learned
https://drugdesigndata.org/about/what-we-have-learned
https://drugdesigndata.org/about/what-we-have-learned
https://drugdesigndata.org/about/what-we-have-learned
https://drugdesigndata.org/about/what-we-have-learned
https://drugdesigndata.org/about/what-we-have-learned


MD-MMGBSA improves on docking scores 
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binding pocket is deep inside 
challenge data set for implicit model (MMGBSA) 

IC50 (uM) 

Δ
G

pr
ed

 (k
ca

l/m
ol

) 

D: MD-MMGBSA 

C:Xscore Docking 
A:Glide Ensemble 

Docking 
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Score 

Docking Methods 

Stage1: 36cmpds 



Summary 
 
► Lessons 
o Ensemble docking performs well in pose prediction & ranking, if there are 

suitably close protein complexes available 

o MD maintains or refines docking poses (protein and ligand) and extends 
the limit of prediction 

– MD can’t refine challenging poses 

o Ensemble-based MD-MMGBSA ranking improves on docking scores 

o Teamwork broke the challenge down to manageable portions 

► Next 
o AMBER MD-MMGBSA to AMBER TI 

o CPU to GPU 
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Towards accurate binding affinity prediction with pmemdGT: an efficient implementation of 
GPU-accelerated Thermodynamics Integration. T. Lee, Y. Hu, B. Sherborne, Z. Guo, D.M. York. 
submitted. 



Thank You! 
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Pose exploration with MD 
Multiple studies show  that the low energy snapshots 
correlate with best pose prediction 

31 

*average energy of the 10 lowest energy snapshots for each trajectory 
of 22 MD simulations differed by the initial position. 

Onufriev, A.; Bashford, D.; Case, D. Proteins, 2004, 55, 383–394. 

650ps 
10 frames Avg 

Hou, et al. J Comput Chem. 2011 Apr 15;32(5):866-77 
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