

PL-2016 Challenge Overview

Zied Gaieb 27 March, 2017

Topics

- PL-2016 Challenge Dataset Overview
- PL-2016 Challenge Instructions
- PL-2016 Challenge Results
- Conclusions

PL-2016 Challenge Dataset Overview

Challenge Dataset

- Kindly Donated by Barry Stoddard (Fred Hutchinson Cancer Research) & David Baker (U. of Washington).
- Five protein structures designed using the Rosetta program.
 - 2 co-crystalized with the ligand 17-hydroxyprogesterone (17-OHP)
 - 3 co-crystalized with the ligand 25-hydroxycholecalciferol (25-D3).

The 17-OHP Binding Dataset

- In both structures:
 - The ligand is the same, 17-OHP
 - It is the designed proteins that differ, 8 mutations

K_d = 60 ± 8 nM

Resolution = 2.5 Å; pH = 7.5

Resolution = 2.0 Å; pH = 4.5

- 250 fold difference in activity.
 - RMSD of ligands = 0.74 Å
- RMSD of proteins = 0.68 Å
- % Sequence identity = 93.13%

The cholecalciferol (25-D3) Binding Dataset

- In all structures:
 - The ligand is the same, 25-D3
 - It is the designed proteins that differ, 13 mutations

Resolution = 1.9 Å; pH = 4.6

Resolution = 2.1 Å; pH = 7.5

Resolution = 1.9 Å; pH = 7.5

(R)

∕(S)‴″<mark>O</mark>⊢

(E)

Protein 1	Protein 2	% identity	Protein RMSD (Å)	Ligand RMSD (Å)
PL-2016-1-C-1	PL-2016-1-C-2	92.6	0.66	1.49
PL-2016-1-C-1	PL-2016-1-C-3	94.8	0.34	0.42
PL-2016-1-C-2	PL-2016-1-C-3	91.4	0.70	1.51

The cholecalciferol (25-D3) Binding Affinities

Protein	Ligand	Affinity (K _d)
PL-2016-1-C-1	25-D3	300 ± 40 nm
PL-2016-1-C-2	25-D3	Similar to PL-2016-1-C-1
PL-2016-1-C-3	25-D3	Similar to PL-2016-1-C-1
PL-2016-1-C-1	D3	~2 µM

(No Crystal Structure)

PL-2016 Challenge Instructions

Challenge

Provided Inputs

- A) Protein structures with the co-crystalized ligand deleted and all the waters retained.
- B) SDfile for ligands 17-OHP, 25-D3 and D3.

Outputs

- A) Predicted poses for the following complexes:
 - PL-2016-1-**O-1**/17-OHP
 - PL-2016-1-**O-2**/17-OHP
 - PL-2016-1-**C-1**/25-D3
 - PL-2016-1-**C-2**/25-D3
 - PL-2016-1-**C-3**/25-D3
- B) Your predicted affinities, scores, or affinity rankings for the protein-ligand pairs for each of the two datasets
 Plus the affinity for PL-2016-1-C-1/vitamin D3.

What makes this challenge interesting?

 The OHP dataset has 250 fold difference in affinity even though the poses are very similar except for a few mutations and fewer crystal water in the binding site.

 The 25-D3 Dataset will also be compared in ranking to the vitamin D3 (6 fold difference in affinity)

PL-2016 Challenge Results

Methods Used by Participants

- A wide range of methods was used:
 - Docking methods: Glide-SP, Vina, Gold, Smina, MedusaDock, PIPER
 - Scoring methods: Glide, Vina, Gold score, MMGBSA, MMPBSA, many knowledge-based scoring methods

Pose Prediction Set Evaluation per Participant

Ligand ID	Number of ligands	Number of participants	
17-OHP	2	16	
25-D3	3	13	

Pose Prediction Set Evaluation per Protein ID

Ligand ID	Number of ligands	Number of participants
17-OHP	2	16
25-D3	3	13

Scoring Set Evaluation

Ligand ID	Number of ligands scored	Number of participants	#with Kendall's Tau = 1
17-OHP	2	17	13/17
25-OHP	2	15	9/15

Protein	Ligand	Affinity (K _d)
PL-2016-1-O-1	17-OHP	60 ± 8 nM
PL-2016-1-O-2	17-OHP	15 ± 2 μΜ

Protein	Ligand	Affinity (K _d)
PL-2016-1-C-1	25-D3	300 ± 40nm
PL-2016-1-C-2	25-D3	Similar to PL-2016-1-C-1
PL-2016-1-C-3	25-D3	Similar to PL-2016-1-C-1
PL-2016-1-C-1	D3	~2 µM

Conclusions

What we learnt

- Pose prediction Average of the Mean RMSD of Best pose was:
 - 0.9 Å for 17-OHP binders
 - 1.5 Å for the 25-D3 binders
- Scoring prediction More than half of the predictions ranked the ligand scores correctly in both targets.
- This was a self-docking challenge and that would explain the good performance across the various methods used.