D3R Grand Challenge 2015 Machine Learning for Protein-Ligand Recognition

David Ryan Koes

Computational and Systems Biology University of Pittsburgh

Docking Results

Screening Results

Affinity Results

Visualizing Significance

Visualizing Significance

Overall Approach

Training Set – Regression

ChEMBL ID 🍦	Preferred Name	UniProt Accession 🍦	Target Type 🛛 🍦	Organism 🍦	Compounds 🍦	Bioactivities 🔻	
CHEMBL3880	Heat shock protein HSP 90-alpha	<u>P07900</u>	SINGLE PROTEIN	Homo sapiens	1672	1979	

import pandas as pd hsp = pd.read_csv('bioactivity-15_21_16_49.txt',sep='\t') smi = hsp[(hsp.STANDARD_TYPE == 'IC50') & (hsp.RELATION == '=') & (hsp.STANDARD_UNITS == 'nM') & (hsp.PCHEMBL_VALUE > 0)].loc[:, ['CANONICAL_SMILES', 'PCHEMBL_VALUE']] smi.to_csv('hsp90.smi',sep='\t',index=False,header=False)

Overall Approach

Features - Classification

```
gauss(o=0,_w=0.5,_c=8)
gauss(o=3, w=2, c=8)
gauss(o=1.5, w=0.3, c=8)
gauss(o=2,_w=0.9,_c=8)
gauss(o=1,_w=0.9,_c=8)
gauss(o=1, w=0.5, c=8)
gauss(o=1, w=0.3, c=8)
gauss(o=1, w=0.7, c=8)
gauss(o=2,_w=0.5,_c=8)
gauss(o=2,_w=0.7,_c=8)
gauss(o=3,_w=0.9,_c=8)
repulsion(o=0, c=8)
hydrophobic(g=0.5, b=1.5, c=8)
hydrophobic(g=0.5,_b=1,_c=8)
hydrophobic(g=0.5,_b=2,_c=8)
hydrophobic(g=0.5, b=3, c=8)
non hydrophobic(g=0.5, b=1.5, c=8)
vdw(i=4,_j=8,_s=0,_^=100,_c=8)
vdw(i=6, j=12, s=1, ^=100, c=8)
e vdw
non_dir_h_bond(g=-0.7, b=0, c=8)
non dir h bond(q=-0.7, b=0.2, c=8)
non dir h bond(q=-0.7, b=0.5, c=8)
non_dir_h_bond(g=-1, b=0, c=8)
non dir h bond(q=-1, b=0.2, c=8)
non dir h bond(q=-1, b=0.5, c=8)
non_dir_h_bond(g=-1.3, b=0, c=8)
non dir h bond(g=-1.3, b=0.2, c=8)
non dir h bond(g=-1.3, b=0.5, c=8)
```

```
non dir anti h bond quadratic(o=0, c=8)
non dir anti h bond quadratic(o=0.5, c=8)
non_dir_anti_h_bond_quadratic(o=1,_c=8)
non_dir_h_bond_lj(o=-0.7,_^=100,_c=8)
non_dir_h_bond_lj(o=-1, ^{=100}, c=8)
non_dir_h_bond_lj(o=-1.3,_^=100,_c=8)
e_hb
e ligPen
ad4 solvation(d-sigma=3.6, s/g=0.01097, c=8)
ad4 solvation(d-sigma=3.6, s/q=0.01097, c=8)
e s1
e s2
e_s3
e s4
e s5
electrostatic(i=1,_^=100,_c=8)
electrostatic(i=2,_^=100,_c=8)
e E0
e E1
num tors div
num heavy atoms div
num heavy atoms
num_tors_add
num_tors_sqr
num tors sqrt
num_hydrophobic_atoms
ligand length
numBonds
bf0
bfN
myRotors
```

60 Terms Steric Hydrophobic van der Waals Hydrogen Bond Solvation Electrostatic Counts

Models - Classification

Linear Regression also LASSO

Artificial Neural Network

Convolutional Neural Net

Convolutional Neural Net

https://github.com/dkoes/qsar-tools

Overall Approach

Docked Poses – Receptors

HSP90 2JJC,2XDX,4YKQ,4YKR with and without binding site waters

MAP4K4

40BO,4U44 plus 10 representative snapshots from 100ns MD

Sampled vs. Selected

Overall Approach

Results

Pose Prediction

Did we improve Vina?

Did we improve Vina?

Not really.

Did we improve Vina?

Conclusions

- Minimal improvement in pose selection
- No improvement with affinity prediction
- Training set is key
- Cross-purpose validation is possible
- CNN scoring has promise
- 2D did not beat 3D

Acknowledgements

Drug Design Data Resource

Students Jasmine Collins Matthew Ragoza

Noah Bastola Jesse Bracho Jocelyn Sunseri

Funding R01GM108340

Questions?

ii 6:	:30pm-8:30pm Sun, Mar 13	*
8		Jasmine Collins
OMP: Divisio. 10	COMP 91: Quantum chemical approach for evaluating molecular mechanics force fields based on comparison D:30am-10:55am Mon, Mar 14	23 ★
OMP: Divisio	COMP 232: GPU implementation of energy minimization for virtual screening	
ComP: Divisio. 11	COMP 165: Pharmit: Interactive exploration of chemical space 1:25am-11:45am Tue, Mar 15	David Koes
COMP: Divisio.	COMP 271: Convolutional neural networks for protein-ligand scoring	23 ★ ≯ Matthew Ragoza
COMP: Divisio	COMP 374: Benchmarking computational methods for binding free-energy estimation :00pm-8:00pm Tue, Mar 15	23 ★ > Jocelyn Sunseri
COMP: Divisio	COMP 377: Fragment oriented molecular shape (FOMS) search: A novel shape-based virtual screening method :00pm-8:00pm Tue, Mar 15	Ethan Hain
C 6:	COMP 232: GPU implementation of energy minimization for virtual screening	