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Overview
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Docking — HSP90 only results

• Clustering of available crystal 
structures 

• rDock and Vina protocols and 
results for pose predictions  

• Statistical analysis of the scoring 
performance the whole data set.



Crystal Data
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PDB search for HSP90 returns 401 crystal structures and 
195 structures with a resolution of < 2 Å.

Can we exploit these structures in a way to optimally predict 
binding poses for the following compounds?

44 73 164

40 179 175



Spectral clustering
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Aim: Group 195 structures in a small set of manageable clusters 
with representative structures for docking. 
Idea: spectral clustering 

RMSD matrix

diffusion Kernel

stochastic matrix

M = D�1LLij = exp

⇣�d2ij
✏

⌘

Mij contains transition 
probabilities from entry i to j .

pcca+

PyEMMA 2, JCTC 1549, 2015



Spectral clustering
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cluster 1 cluster 2 cluster 3 cluster 1 — loop 
104-111 closed

cluster 2 — alpha 
helix 104-111 

closed

cluster 3 — 
open alpha 

104-111

RMSD 
in [A]



Docking Protocols
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Cross docking of all co-crystallised ligands within each 
cluster using rDock.

Pick crystal structure with the best cross-docking score for 
each cluster + 2 more crystal structures with rearranged 
LYS58 ASP54 side chains: 2CCU 2FWZ 4CWF 4L94 4W7T

rDock: Pharmacophoric restraintsVina ‘default’ docking

 5 crystal structure scores
average structure scores

best structure scores
visual structure scores

 5 crystal structure scores
average structure scores

best structure scores
visual structure scores*

* ignores docking ranking, instead visual inspection of first 15 poses out of all 5 crystal 
structure protocols

Ruiz-Carmona et al. PLoS Comput Biol 10(4): e1003571.O. Trott, et al, J. Comp. Chem. 31 (2010) 455-461



Docking Results I
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Visual rDock Result — Best Protocol for RMSD

44 73 164

40 179 175



Docking Results II
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1000 bootstrap samples with 95% confidence intervals shown. 

Mean R value and Kendall τ, off by 0.1 from computation of organisers.  
Overall docking score preforms the best in comparison to other 
entries, including most of the dataset. 



Docking Results II
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rDock Average 
Vina 4W7T

Maximum AUC computed is 0.64, for rDock Average protocol. 
Organisers identified the same protocol as the best but computed a value of AUC = 0.73 
AUC = 0.73 is also the best overall ranking score.  
VINA scores are significantly worse.

active: [c] < 50 μM — 33 are not active

False positive rate
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Docking Conclusions
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6 Pose predictions: 
— visual rDock protocol gives the best RMSD results. 
— visual rDock performs well in comparison to other submissions.

Scoring of 180 compounds: 
— Difficult to establish best protocol based on Kendall τ or R value 
— Clear outlier of protocol docking to crystal structure 4l94 using rDock 
— All protocols perform comparable to or better than other submissions 
— AUC calculations show clear similarities within rDock and Vina protocols, 
     but also clear differences between rDock and Vina.  
— Best AUC score performs best amongst other submissions. 



Overview
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Free Energy Calculations

• Free energy protocol and test data 
• Set 3 results — a reasonable success 
• Set 2 results — aka how a water 

molecule can drastically change your 
prediction  

• Set 1 results — what went wrong?
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Alchemical free energy

ΔΔGbind = ΔG4 - ΔG2 = ΔG1 - ΔG3 
Δ
G
1

Δ
G
3

λ=0           λ=1

ΔG2

ΔG4

ΔG1, ΔG3  are difficult to compute with 
MD simulations. 
ΔG2, ΔG4  can be computed via so 
called alchemical free energy 
calculations (AFEC)
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Relative free energy calculation involves modifying our MD 
potential with a switching function that allows an artificial 
perturbation from one molecule to another.

U(r1 . . . rN ,�) ⌘ f(�)UA(r1 . . . rN ) + g(�)UB(r1 . . . rN )

g(�) = �f(�) = 1� �

Alchemical free energy

Setup is done using FESetup and somdfreenrg from the 
software package Sire using OpenMM, all small 
molecules were parametrised using GAFF AM1/BCC.



Test set

14

Bruncko et al. 2010

Benzimidazolone derivatives as HSP90 inhibitors
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ID IC50 [μM]
9b 2.32
9c 0.22
9d 34.9
9e 0.054
9f 2.53

Experimental values

9c is co-crystalised 
in 3OW6 and used 
as a template for 
other compounds.
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Getting to the numbers

N
H
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CF3
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Cl

OH

9e

ΔΔG(9e,9b) = 
ΔG(9e,9b)bound - ΔG(9e,9b)solvated  

ΔG(9e,9b)bound

ΔG(9e,9b)solvated 

Simulation details:

MBAR

MBAR

• NPT simulation, with 4 fs time step at 298K.  
• Single topology.  
• 16 equally spaced λ windows.  
• single 8 ns production run. (Actual data multiple repetitions) 
• MBAR analysis after drawing uncorrelated data  from simulated 

dataset using the time series analysis module in pymbar.
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Bruncko et al. 2010

If there is no experimental data available how can we know that an 
alchemical calculation gives reasonable results?

nX

i=1

�i = 0

Kirchhoff’s law:

Also:
ΔΔG(9d,9e) = - ΔΔG(9e,9d)

For example: 

ΔΔG(9d,9e) + ΔΔG(9e,9b)+ΔΔG(9b,9d)=0

cycle
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Bruncko et al. 2010

In a directed graph there are multiple paths to compute the same 
relative free energy:

ΔΔG(9b,9d)p1 = 

ΔΔG(9b,9d)p2 = ++

<ΔΔG(9d,9f)> ± σ(ΔΔG(9d,9f)) 

For D3R results, we computed the 
average over all possible paths and 
the resulting standard deviation.
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Bruncko et al. 2010
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Bruncko et al. 2010
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Bruncko et al. 2010
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Comparing to experiment:

��GA,B = kBT ln(
IC50B
IC50A

)

Bruncko et al. 2010

Bootstrapping computational 
predictions, looking at variation of 
different observables. 

Test set
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Set 1-3— how we did

Set 1 Set 2 Set 3
-0.44 -0.553.8 -0.33-0.613.3 1.3 0.41 0.3

Summary of bootstrapped results comparing to experimental data:

Organisers analysis:

Pearson R -0.80 / 41st (44) -0.40 / 11th (18) 0.42 / 3rd (20)

RMS error val/ 
Rank (# 

submissions)
2.67 / 12th (44) 2.00 / 10th (18) 1.43 / 1st (20)
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Set 3 — how we did
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in relative 
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Comparing to experiment:

Set 3 — how we did

��GA,B = kBT ln(
IC50B
IC50A

)
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Set 2 — how we did
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Set 2 — how we did
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Averaged, computed and experimental ΔΔG, for simulated 
pairs.

Set 2 — how we did

?



26

Set 2 — how we did
What if we had included crystal water in hsp90_100 starting 
compounds?

original hsp90_100 
starting structure for 
submission

clashing crystal water moved and preserved crystal 
water
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Including 3rd crystal water in calculation improved the predictions, 
giving an R value of 0.56 and τ = 0.66.

Set 2 — how we did
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Set 1
From the docking, it was not clear which are the correct poses for dataset 1.  
Idea: Use the relative free energy calculations to determine the best pose. 

N

NH2

N

Cl Cl

82_pose1

N

NH2

NCl

82_pose2

Cl

N

NH2

N

82_pose7

Cl

Cl

N

NH2

NCl

INT02

Cl

N

NH2

NCl

80_pose1

Cl

O

N

NH2

N

80_pose15

ClO

Cl

N

NH2

N

INT03

ClCl

N

NH2

N

80_pose13
Cl

O

Cl

N

NH2

N

INT01

-4.75 ± 0.09

0.60 ± 0.23

-1
.2
2 
± 
0.
10

0.
33
 ±
 0
.0
8

-
0
.
6
5
 
± 
0
.
2
2

-5.09 ± 0.08

-
0
.
7
5
 
± 
0
.
1
0

-
1
.
6
1
 
± 

0
.
2
1

6.
25
 ± 

0.
09

0.
16
 ±
 0
.2
1

2
.
8
4
 
± 
0
.
2
0

80_p1
80_p15



29

Set 1
From the docking, it was not clear which are the correct poses for dataset 1.  
Idea: Use the relative free energy calculations to determine the best pose. 
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Set 1
Comparing to experiment:

With the actual data given, does a not selected pose perform better? 
No, there is no clear pose which should be the right one resulting in 
better agreement with experimental free energy differences. 
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Test data from crystal structures perform much better in 
predicting binding free energies than the D3R challenge datasets.
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Test data from crystal structures perform much better in 
predicting binding free energies than the D3R challenge datasets.

Overall, ranking/free energy prediction in a relative free energy 
calculation can be skewed from one badly estimated 
compound, i.e here the missing water in Set 2.

Set 3 binding free energies from relative free energy calculations 
performed comparatively well to other submissions, but are far 
from accurate. 

High variability in correct predictions despite employing identical 
simulation protocols. 

Set 1: With unknown correct binding poses, the protocol failed to 
estimate the correct pose from the free energy calculation. 



Acknowledgments

32

Funding:

Jordi Juárez-Jiménez

Julien Michel

Alexis Hennessy

D
oc

ki
ng

The rest of the Michel group.



Questions?

33

www.xkcd.com

http://www.xkcd.com

