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Overview

| Docking — HSP90 only results
I

* Clustering of available crystal
Structures

* rDock and Vina protocols and
results for pose predictions

 Statistical analysis of the scoring
performance the whole data set.
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Crystal Data

PDB search for HSP90 returns 401 crystal structures and
195 structures with a resolution of < 2 A.

Can we exploit these structures in a way to optimally predict
binding poses for the following compounds”?
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Spectral clustering

Aim: Group 195 structures in a small set of manageable clusters
with representative structures for docking.
Idea: spectral clustering
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Spectral clustering

cluster 1 cluster 2 cluster 3 . 3.2

RMSD
in [A]

0 ' 4 = 2am § 4 l Mgz 1}
El“&i{! I} L 28

- 2.4

i 4:‘ = |
_ ” KL et |
50 |

_.......:.J....._.--

!

!

TR 2.0
T* : :-‘;5}.
100 - SIS i Es thr | 16
I . 3 ryre i ”t:.l.' " ] ] — 1.2
r;. .'\'\ t I il

150 + =81
L_ : : ‘_4\‘.. . B 0.8

= = :.':-:5"

; SR 0.4
0 50 100 150
0.0

cluster 2 — alpha
helix 104-111
closed

cluster 1 — loop
104-111 closed

cluster 3 —
open alpha
104-111




9. THE UNIVERSITY
- of EDINBURGH

Docking Protocols
Cross docking of all co-crystallised ligands within each
cluster using rDock. &@ g@ %

v

Pick crystal structure with the best cross-docking score for

each cluster + 2 more crystal structures with rearranged
LYS58 ASP54 side chains: 2CCU 2FWZ 4CWF 4L.94 4AW7T

rDock: Pharmacophoric restraints

5 crystal structure scores

v
Vina ‘default’ docking

5 crystal structure scores
average structure scores average structure scores

best structure scores best structure scores

visual structure scores® visual structure scores

* ignores docking ranking, instead visual inspection of first 15 poses out of all 5 crystal

structure protocols
O. Trott, et al, J. Comp. Chem. 31 (2010) 455-461 Ruiz-Carmona et al. PLoS Comput Biol 10(4): e1003571.
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Docking Results |

Visual rDock Result — Best Protocol for RMSD

44 73 164

RMSD: 3.45 A RMSD: 0.68 A RMSD: 0.63 A

179

RMSD: 0.67 A RMSD: 0.63 A RMSD: 1.14 A




Docking Results |l

1000 bootstrap samples with 95% confidence intervals shown.

vina-BEST A
vina-AVE -
vina-4w7t -
vina-4194 -
vina-4cwf -
vina-2fwz -
vina-2ccu -

rdock-BEST -
rdock-AVE -
rdock-4w7t |
rdock-4194 -
rdock-4cwf -
rdock-2fwz -
rdock-2ccu -
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vina-BEST A
vina-AVE -
vina-4w7t -
vina-4194 -
vina-4cwf -
vina-2fwz -
vina-2ccu A

rdock-BEST -
rdock-AVE -
rdock-4w7t
rdock-4194 -
rdock-4cwf -
rdock-2fwz -
rdock-2ccu A

-0.1

0.0

0.1 0.2 0.3 0.4
Kendall 7

Mean R value and Kendall T, off by 0.1 from computation of organisers.
Overall docking score preforms the best in comparison to other
entries, including most of the dataset.
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Docking Results |l —
active: [c] < 50 uyM — 33 are not active
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Maximum AUC computed is 0.64, for rDock Average protocol.

Organisers identified the same protocol as the best but computed a value of AUC = 0.73
AUC = 0.73 is also the best overall ranking score.

VINA scores are significantly worse.
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Docking Conclusions

6 Pose predictions:
— visual rDock protocol gives the best RMSD results.
— visual rDock performs well in comparison to other submissions.

Scoring of 180 compounds:

— Difficult to establish best protocol based on Kendall T or R value

— Clear outlier of protocol docking to crystal structure 4194 using rDock

— All protocols perform comparable to or better than other submissions

— AUC calculations show clear similarities within rDock and Vina protocols,
but also clear differences between rDock and Vina.

— Best AUC score performs best amongst other submissions.
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Overview

! Free Energy Calculations

* Free energy protocol and test data
e Set 3 results — a reasonable success

* Set 2 results — aka how a water
molecule can drastically change your
orediction

* Set 1 results — what went wrong"
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Alchemical free energy

AAGping = AGy - AGo = AGq - AGs3

A=0 A=

AGo>
“ > ‘. AG1 AGs are difficult to compute with
MD simulations.
A A

. AG2 AGs4 can be computed via so
(O called alchemical free energy
<1 calculations (AFEC)
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Alchemical free energy

Relative free energy calculation involves moditying our MD
potential with a switching function that allows an artificial
perturpation from one molecule to another.

Ury...tn,A) = f(AN)Ua(r1...vrx) + g AN)Up(r1...1rN)
fA) =1-=2A g(A) = A

Setup is done using FEsetup and somdfreenrg from the
software package sire using OpenMM, all small
molecules were parametrised using GAFF AM1/BCC.




\ L £ p
A4 J

 THE UNIVERSITY
= of EDINBURGH

Benzimidazolone derivatives as HSPOO inhibitors
Experimental values

CF5
HO >

N <
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Cl
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HO
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| =0
N
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o o
HO . | N\FO

D |IC50 [uM]
b 232
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99 34.9
e 0.054
of 253

9cC Is co-crystalised
N 3OW6 and useo
as a template for
other compounas.

Bruncko et al. 2010
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Benzimidazolone derivatives as HSPOO inhibitors
Experimental values
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ANG(9e,90) =
Getting to the numbers AG(9e,90)0ound - AG(9€,9D)solvates

AG(96,9b)bound

o —

VBAR
"0 VBAR
gy 0 b
H AG(96,9b)solvated
9d

Simulation details:
- NPT simulation, with 4 fs time step at 298K.
Single topology.
16 equally spaced A windows.
- single 8 ns production run. (Actual data multiple repetitions)
MBAR analysis after drawing uncorrelated data from simulated
dataset using the time series analysis module in pymbar.

|5
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It there is no experimental data available how can we know that an
alchemical calculation gives reasonable results?

Kirchhoff’s law:
Z ¢i =0
1=1

For example: cycle

AAG(9d,9¢e) + AAG(9e,9b)+AAG(9b,9d)=0

Also:
AAG(9d,9e) = - AAG(9e,9d)

Oe
Bruncko et al. 2010
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In a directed graph there are multiple paths to compute the same
relative free energy:

AAG(9b,9d)p1 = —»
+ AAG(9b,9d)p2 = +

<AAG(9d,9)> + o(AAG(9d,9f))

% For D3R results, we computed the
average over all possible paths and
the resulting standard deviation.

9e

Bruncko et al. 2010
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Bruncko et al. 2010
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Bootstrapping computational

Comparing to experiment: oredictions, looking at variation of
|C50 i
AAG A4 p = kT In( B) different observables.
- C50A
_.5-
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| Bruncko et al. 2010
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Set |-3— how we did

Summary of bootstrapped results comparing to experimental data:

Set 1 Set 2 Set 3

4 3.8 -0.44 -0.55 35 3.3 -0.61 -0.33 14 1.3 0.41 0.3
3 NH; 3.0 100 1.2
Cl N)\N 2.5 HZN\//NYN/> 10

2 \| A 20 N///\ N~y
Cl = 15 C|\| AN 08
1 80 _pose1 10 = 06
- 05 Cl 04
0.0
° B g ==
-1 -1.0 0.0
mue R T mue R - mue R T

Organisers analysis:

Pearson R |-0.80/ 41st (44) -0.40/ 11th (18) 0.42 / 3rd (20)
RMS error val/

Rank (# 2.67 / 12th (44) 2.00/10th (18) 1.43 / 1st (20)
submissions)

20
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Set 3 — how we did )

Averages over two runs. d@

\ ~/—OH
N

34-p2

_~_N
QL A
OH —_

H
(5 o

10-p3

Difficult to simulate

@[OHI.5 £+ 0.9 CE iﬂ relative
% calculations. No
- -~ - N reliable prediction.

N INTO3
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Set 3 — how we did

Comparing to experiment:

|C50g
AAGA g = kT In( ) =10~
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Set 2 — how we did

amino pyrimidine derivatives, averages over two runs.
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Set 2 — how we did

2 - 92

B experimental

1 f Bl computational
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Averaged, computed and experimental AAG, for simulated

pairs.

AAG In [kecal/mol]

4 -
B experimental
3. B computational

00~106 100~105{101~106 101~105 106~100 106~101 106~105 105~100 105~101 105~106

25
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Set 2 — how we did

What if we had included crystal water in hsp90_100 starting
compounds?

clashing crystal water original hsp90_100 moved and preserved crystal
starting structure for water
submission

26
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Including 3rd crystal water in calculation improved the predictions,
giving an R value of 0.56 and T = 0.60.
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From the docking, it was not clear which are the correct poses for dataset 1.
Idea: Use the relative free energy calculations to determine the best pose.

NH2 + NH2
BN 0.60 + 0.23 PN

80_pose15 /@)\)
cl

2.84 + 0.20
z —>
<
z
|
R

Q
z
=z

Cl

80_pose1 82_pose7

28
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From the docking, it was not clear which are the co

Idea: Use the relative free energy Calculatlons 0 destructure AAG

NH2 0.60 + 0.23

0 cl

80_pose15

+ 0.20
+ 0.10

2.84
-0.75

@)
z

Cl

80_pose1 82_pose?

*
*
L3
-
-
*
-
3
*
-
.
-
*
.
-
L3
*
-
‘e
N ‘s N~ N Cl
| -
O
—
C

error

80-p1 0.00 0.00
80-p13 1.66 0.00
80-p15 0.44 0.00
81-p -3.19 0.22
81-p3 -2.30 0.22
81-p11 -2.69 0.22
82-p1 -3.37 0.22
82-p2 .72 0.22
82-p7 -1.97 0.22
83-p1 -5.94 0.22
83-p17 0.01 0.22
84-p1 -4.84 0.22
84-p6 -4.82 1.26
84-p8 -1.57 1.26
INTO1 2.67 0.00
INTO2 .84 0.00
INTO3 1.06

0.00
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Comparing to experiment: £,
©
2- 2 31
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2 0- 34 35 36 37 38 39 40 4.1 42
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< 10 -
= K 6-
S -3- o
a + + 4 -
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O 0 | | | | | I
-5 S, S ~0.60-0.55-0.50-0.45-0.40-0.35-0.30-0.25
5 -4 -3 2 -1 0 1 2 R

Experimental AAG [kcal/mol]

With the actual data given, does a not selected pose perform better?
No, there is no clear pose which should be the right one resulting in
better agreement with experimental free energy differences.
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Conclusions

Test data from crystal structures perform much better in
predicting binding free energies than the D3R challenge datasets.
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Conclusions

Test data from crystal structures perform much better in
predicting binding free energies than the D3R challenge datasets.

Set 3 binding free energies from relative free energy calculations

performed comparatively well to other submissions, but are far
from accurate.
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Conclusions

Test data from crystal structures perform much better in
predicting binding free energies than the D3R challenge datasets.

Set 3 binding free energies from relative free energy calculations

performed comparatively well to other submissions, but are far
from accurate.

Overall, ranking/free energy prediction in a relative free energy
calculation can be skewed from one badly estimated
compound, i.e here the missing water in Set 2.
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Conclusions

Test data from crystal structures perform much better in
predicting binding free energies than the D3R challenge datasets.

Set 3 binding free energies from relative free energy calculations
performed comparatively well to other submissions, but are far
from accurate.

Overall, ranking/free energy prediction in a relative free energy
calculation can be skewed from one badly estimated
compound, i.e here the missing water in Set 2.

Set 1: With unknown correct binding poses, the protocol failed to
estimate the correct pose from the free energy calculation.
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Conclusions

Test data from crystal structures perform much better in
predicting binding free energies than the D3R challenge datasets.

Set 3 binding free energies from relative free energy calculations
performed comparatively well to other submissions, but are far
from accurate.

Overall, ranking/free energy prediction in a relative free energy
calculation can be skewed from one badly estimated
compound, i.e here the missing water in Set 2.

Set 1: With unknown correct binding poses, the protocol failed to
estimate the correct pose from the free energy calculation.

High variability in correct predictions despite employing identical
simulation protocols.
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