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SAMPL5: Distribution coefficients 
and host-guest binding
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In SAMPL4, the Octa Acid HG 
 system was somewhat tractable

Alchemical relative free 
energies, TIP3P, GAFF, 
RESP HF6-31G*



This year, we have “standard calculations”, a new 
element to separate methods from setups

For SAMPL4 hydration, 
methods which are the same 

agree

For HG systems, things are not 
necessarily so simple



At Genentech, distribution coefficients were 
obtained for 53 compounds

Pcyc =
[Neutral solute in cyclohexane]

[Neutral solute in water]

Dcyc =
[Solute in cyclohexane]

[Solute in water]

cyclohexane

water

Partition coefficients and distribution coefficients 
are similar, but the latter includes all species:

pH dependent, so we report                    at pH 7.4logD7.4



The set is drug-like (from Genentech’s library)  
and diverse (Batch 0)
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How should we expect people to do?

For partition coefficients at infinite dilution, we could calculate

logP =

��Gtransfer

RT ln(10)

=

�Ghyd. ��Gcyc.

�RT ln(10)

If we take a error of 1.5 kcal/mol as typical from last SAMPL:

Let’s assume a typical method makes equal errors in cyclohexane and 
water solvation free energies, so we expect an error in log P values of

�(logP ) =

p
2⇥ ��G

solv

RT ln(10)

We would expect the typical error in log P to be 1.54 log units.
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We would expect the typical error in log P to be 1.54 log units.
EXCEPT this set is substantially more complex/polyfunctional…



In reality, people do a bit worse than 1.5 log 
units - but not that much worse

Top 
few: 
16, 
02, 
44, 
73, 
60, 
40 
36



We use several metrics; here let’s check 
against correlation

Top 
few: 
16, 
19, 
36, 
14, 
31, 
33



Let’s take a look at some of these predictions
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We’ll hear from Andreas Klamt later about 
submission 16

COSMO-RS/
COSMOtherm 

COSMO-RS log P 
calculations, adjusted 
to log D using proton 
dissociation/
protonation constants 

Includes multiple 
tautomers (050, 056, 
065, 083) and 
accounting for 
zwitterions 

Andreas Klamt



MD/thermodynamic 
integration with GAFF-
DC 

Custom UA 
cyclohexane 

Dielectric corrected 
water (custom) 

LJ scaling coupled 
with condensed phase 
charge changes in an 
environment-
dependent manner 
(fixes neat liquid and 
partition properties) 

Christopher Fennell

Modified GAFF/AM1-BCC with dielectric 
corrections worked quite well



Log P calculations 
(deliberately) based 
on infinite dilution 
solvation free energy 
calculations in water 
and cyclohexane 

GAFF+AM1-BCC 

Blind predictions by 
Kalli Burley and 
Caitlin Bannan (not 
competing, but 
submitted)

Our reference calculations were also in the top 
25% by most metrics
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Across best 6 
predictions: 

Compounds 74 and 
83 are particularly 
problematic 

BUT, value for 83 is 
log D = -8+/-7 
whereas for 74 it’s 
-7.5+/-0.8 

Consensus for 74; no 
consensus for 83

Do the predictions suggest any issues with the 
experimental data? Maybe



Average Log D for top 6 predictions for 
SAMPL5_74 is -7.5+/-0.8 

SAMPL5_074 is extremely polar and the 
calculated value much more strongly prefers 

water than experiment

No apparent pKa/tautomer issues 

Cyclohexane water content could be an 
issue? Or dimer/oligomerization? 



The water content of cyclohexane can make a huge 
difference, at least in extreme cases

Black et al., (JCP 16:537 (1948)) report 
solubility of cyclohexane in water as 
0.0449 mole fraction 

We obtained: 
   Log D (pure cyclohexane): -3.76+/-0.04 
   Log D (with 0.045 mf water): -1.73+/-0.04 

Experiment: -1.9+/-0.03 

Change of 2 log units based on 0.045 mole fraction water!



In our standard calculations, we did log P 
values. What if we’d done log D?
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A first pass is to correct for pKa’s, which 
improves things modestly
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060

050

063

020



More properly, we should be handling the 
populations of all states based on predicted 

energetics

Drops RMS from 
2.6+/-0.2 to 2.1+/-0.2 

Improves R from 
0.6+/-0.01 to 
0.77+/-0.06

060

050

020



One reason pKa/state corrections can make things 
worse is that we’re only doing them for water

N
N

N

N

OH

SAMPL5_050

Experiment -3.2 
Our log P: 1.2 
Epik state penalty: -11.9 
logD = -10.7
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Experiment -3.2 
Our log P: 1.2 
Epik state penalty: -11.9 
logD = -10.7

N
N

N

N
H

O

SAMPL5_050_conformer2

Our log P: -6.04 
Epik state penalty: -0.453 
logD = -6.49



It turns out that a “guess zero” model would 
have done relatively well here

RMS error 1.8+/-0.1 
AUE 1.6+/-0.1 

Best by both metrics 
Also smallest max error 



It turns out that a “guess zero” model would 
have done relatively well here

RMS error 1.8+/-0.1 
AUE 1.6+/-0.1 

Best by both metrics 
Also smallest max error 

Why? Dynamic range is not huge 
here and compounds are fairly 

clustered near zero 



This means that some methods suffer from 
“overprediction”



This means that some methods suffer from 
“overprediction”

Better even 
than “guess 
zero”: 

RMS 1.4 
AUE 1.2



The host-guest challenge involved the familiar 
OctaAcid, and a new methylated (OAMe) version
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The challenge focused on binding of the same 
six guests to both hosts



The Octa Acid systems proved still to be quite 
challenging: OAH
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The Octa Acid systems proved still to be quite 
challenging: OAH

Submission 02 Submission 12

Jane Yin, Gilson lab,  
standard/reference calculation 
MD free energy via “attach pull 

release”

Florentina Tofoleanu, Brooks 
group, alchemical absolute 

calculations



But for more typical submissions, things were 
a good deal worse



The methylated version seemed to be more 
challenging still
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Jane Yin, Gilson lab,  
standard/reference calculation 
MD free energy via “attach pull 

release”

Again, the best submissions seem reasonable, 
but some systematic error?

Submission 05 Submission 03

Julien Michel group, SOMD 
AM1-BCC/GAFF/MBAR



A method might be ranked “well” in OAMe and 
not OAH, and vise versa

Submission 03, OAMeSubmission 01, OAH

Julien Michel’s group; absolute binding free energy calculations  
with restraints using MD (Sire/OpenMM); analyzed via MBAR
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Four Water Models Behave Differently on Binding 
Enthalpies, but Similarly on Binding Free Energies



CBClip is a new host for the SAMPL challenge
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This seems to be far more challenging than 
the Octa Acid systems
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Here, the top methods by RMS/AUE have near 
zero correlation

Submission 09 Submission 03



But runners up from the Michel group achieve 
some correlation here (and lead on tau/R)

Submission 06 Submission 11



What did we learn?
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HG calculations are still very difficult
We still have much to learn that’s 
relevant to biomolecular binding
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