SAMPL5: Distribution coefficients and host-guest binding

David Mobley

SAMPL challenges often involve solvation, host-guest binding

SAMPL challenges often involve solvation, host-guest binding

Hydration free energy predictions have improved greatly over the years

Hydration free energy predictions have improved greatly over the years

Hydration free energy predictions have improved greatly over the years

In SAMPL4, the Octa Acid HG system was somewhat tractable

This year, we have "standard calculations", a new element to separate methods from setups

At Genentech, distribution coefficients were obtained for 53 compounds

Partition coefficients and distribution coefficients are similar, but the latter includes all species:

$$P_{cyc} = \frac{[Neutral \ solute \ in \ cyclohexane]}{[Neutral \ solute \ in \ water]}$$

$$D_{cyc} = \frac{[Solute \ in \ cyclohexane]}{[Solute \ in \ water]}$$

pH dependent, so we report $\log D_{7.4}$ at pH 7.4

The set is drug-like (from Genentech's library) and diverse (Batch 1)

The set is drug-like (from Genentech's library) and diverse (Batch 2)

The set is drug-like (from Genentech's library) and diverse (Batch 2)

How should we expect people to do?

For partition coefficients at infinite dilution, we could calculate

$$\log P = \frac{-\Delta G_{transfer}}{RT \ln(10)} = \frac{\Delta G_{hyd.} - \Delta G_{cyc.}}{-RT \ln(10)}$$

Let's assume a typical method makes equal errors in cyclohexane and water solvation free energies, so we expect an error in log P values of

$$\delta(\log P) = \frac{\sqrt{2} \times \delta \Delta G_{solv}}{RT \ln(10)}$$

If we take a error of 1.5 kcal/mol as typical from last SAMPL:

We would expect the typical error in log P to be 1.54 log units.

How should we expect people to do?

For partition coefficients at infinite dilution, we could calculate

$$\log P = \frac{-\Delta G_{transfer}}{RT \ln(10)} = \frac{\Delta G_{hyd.} - \Delta G_{cyc.}}{-RT \ln(10)}$$

Let's assume a typical method makes equal errors in cyclohexane and water solvation free energies, so we expect an error in log P values of

$$\delta(\log P) = \frac{\sqrt{2} \times \delta \Delta G_{solv}}{RT \ln(10)}$$

If we take a error of 1.5 kcal/mol as typical from last SAMPL:

We would expect the typical error in log P to be 1.54 log units.

EXCEPT this set is substantially more complex/polyfunctional...

In reality, people do a bit worse than 1.5 log units - but not that much worse

We use several metrics; here let's check against correlation

Let's take a look at some of these predictions

Let's take a look at some of these predictions

We'll hear from Andreas Klamt later about submission 16

COSMO-RS/ COSMOtherm

COSMO-RS log P calculations, adjusted to log D using proton dissociation/ protonation constants

Includes multiple tautomers (050, 056, 065, 083) and accounting for zwitterions

Andreas Klamt

Modified GAFF/AM1-BCC with dielectric corrections worked quite well

Christopher Fennell

Our reference calculations were also in the top 25% by most metrics

Log P calculations (deliberately) based on infinite dilution solvation free energy calculations in water and cyclohexane

GAFF+AM1-BCC

Blind predictions by Kalli Burley and Caitlin Bannan (not competing, but submitted)

Our reference calculations were also in the top 25% by most metrics

Do the predictions suggest any issues with the experimental data? Maybe

SAMPL5_074 is extremely polar and the calculated value much more strongly prefers water than experiment

Average Log D for top 6 predictions for SAMPL5_74 is -7.5+/-0.8

No apparent pKa/tautomer issues

Cyclohexane water content could be an issue? Or dimer/oligomerization?

The water content of cyclohexane can make a huge difference, at least in extreme cases

Black et al., (JCP 16:537 (1948)) report solubility of cyclohexane in water as 0.0449 mole fraction

We obtained: Log D (pure cyclohexane): -3.76+/-0.04 Log D (with 0.045 mf water): -1.73+/-0.04

Experiment: -1.9+/-0.03

Change of 2 log units based on 0.045 mole fraction water!

In our standard calculations, we did log P values. What if we'd done log D?

In our standard calculations, we did log P values. What if we'd done log D?

A first pass is to correct for pKa's, which improves things modestly

Comparing predictions for 'logP' corrected by largest pKa

A first pass is to correct for pKa's, which improves things modestly (except...)

Comparing predictions for 'logP' corrected by largest pKa

More properly, we should be handling the populations of all states based on predicted energetics

One reason pKa/state corrections can make things worse is that we're only doing them for water

SAMPL5_050

Experiment -3.2 Our log P: 1.2 Epik state penalty: -11.9 logD = -10.7

One reason pKa/state corrections can make things worse is that we're only doing them for water

SAMPL5_050

Experiment -3.2 Our log P: 1.2 Epik state penalty: -11.9 logD = -10.7

Our log P: -6.04 Epik state penalty: -0.453 logD = -6.49

It turns out that a "guess zero" model would have done relatively well here

RMS error 1.8+/-0.1 AUE 1.6+/-0.1

Best by both metrics Also smallest max error

It turns out that a "guess zero" model would have done relatively well here

RMS error 1.8+/-0.1 AUE 1.6+/-0.1

Best by both metrics Also smallest max error Why? Dynamic range is not huge here and compounds are fairly clustered near zero

This means that some methods suffer from "overprediction"

The host-guest challenge involved the familiar OctaAcid, and a new methylated (OAMe) version

OAH R=H OAMe R=Me

The host-guest challenge involved the familiar OctaAcid, and a new methylated (OAMe) version

The challenge focused on binding of the same six guests to both hosts

The Octa Acid systems proved still to be quite challenging: OAH

The Octa Acid systems proved still to be quite challenging: OAH

The Octa Acid systems proved still to be quite challenging: OAH

Submission 02

Submission 12

Jane Yin, Gilson lab, standard/reference calculation MD free energy via "attach pull release"

Florentina Tofoleanu, Brooks group, alchemical absolute calculations

But for more typical submissions, things were a good deal worse

The methylated version seemed to be more challenging still

The methylated version seemed to be more challenging still

Again, the best submissions seem reasonable, but some systematic error?

Jane Yin, Gilson lab, standard/reference calculation MD free energy via "attach pull release"

Julien Michel group, SOMD AM1-BCC/GAFF/MBAR

A method might be ranked "well" in OAMe and not OAH, and vise versa

Julien Michel's group; absolute binding free energy calculations with restraints using MD (Sire/OpenMM); analyzed via MBAR

Attach-Pull-Release (APR) Approach

$\Delta G_{bind}^{0} = -(W_{attach} + W_{pull} + W_{release-conf} + W_{release-std})$

Henriksen, N. M., Fenley, A. T., & Gilson, M. K. (2015). *J. Chem. Theory Comput.*, *11*(9), 4377-4394. Velez-Vega, C., & Gilson, M. K. (2013). *J. Comput. Chem.*, *34*(27), 2360-2371.

Structures of Octa Acid Guests

Sun, H., Gibb, C. L., & Gibb, B. C. (2008). Supramol. Chem., 20(1-2), 141-147 Gibb, C. L., & Gibb, B. C. (2014). J. Comput.-Aided Mol. Des., 28(4), 319-325.

Four Water Models Behave Differently on Binding Enthalpies, but Similarly on Binding Free Energies

CBClip is a new host for the SAMPL challenge

CBClip is a new host for the SAMPL challenge

This seems to be far more challenging than the Octa Acid systems

This seems to be far more challenging than the Octa Acid systems

Here, the top methods by RMS/AUE have near zero correlation

But runners up from the Michel group achieve some correlation here (and lead on tau/R)

Acknowledgments

- Genentech for sponsoring DC experiments/internship, especially JW Feng, Baiwei Lin, Dan Ortwine, Joe Pease, Justin Dancer
- Mike Gilson (UCSD) for involvement in all aspects of SAMPL
- Michael Shirts for reference calculation input format conversion
- DC experiments: Bas Rustenberg and John Chodera (MSKCC)
- DC reference calculations/analysis: Caitlin Bannan, Kalli Burley (UCI)
- HG experiments: Bruce Gibb (Tulane), Lyle Isaacs (Maryland) and their group members
- HG analysis: Shuai Liu, Mike Gilson (UCSD)
- HG reference calculations: Jian Yin (UCSD)
- Helpful comments/input/etc.: Andreas Klamt, Chris Fennell, John Chodera
- NIH for D3R support, D3R for support of SAMPL
- NSF for support of my group's work on solvation

