

Octa-Acid Binding Affinities with QM Methods

Ulf Ryde Theoretical Chemistry Lund University Sweden

Intro
 DFT-D3
 CCSD(T)
 MD snaps

1. Introduction

2. DFT Optimisation

3. DLPNO-CCSD(T)

4. MD snapshots

Results from SAMPL4

• FEP with MM RESP or AM1-BCC charges

- QM/MM-FEP with NBB or ssEA
 - DFT on optimised structures
 - LCCSD(T0)-PMISP on DFT structures
 - Varying results

	MAD	R^2	τ_{r}
RESP	4	0.8	1.0
AM1-BCC	4	0.8	1.0
QM-FEP	26	0.4	-0.3
DFT opt	6	0.8	0.7
LCCSD(T0)	24	0.4	0.3

SAMPL5

Philosophy

 Ligands not proper for FEP Dissimilar ligands Varying net charge

In SAMPL4 DFT-opt gave MAD 6–9 kJ/mol

 Might be good enough if FEP does not work

 Improve the DFT approach with gained experience

Improvements

Minimise effect of flexibility

Reduce effects of negative charge

Try MD sampling

 Improve CCSD(T) with DLPNO-CCSD(T)
 (domain-based local pair natural orbital) no fractionation needed

DFT-opt in SAMPL4

Three approaches

- Opt in vacuum
- Opt in COSMO continuum

COSMO + 4 water

	Vac	Cos	Wat	Cons
MAD	7	9	9	6
MADtr	5	8	9	6
R^2	0.8	0.7	0.6	0.8
τ	0.7	0.7	0.7	0.7

Flexibility of host from MD

Breathing motion

- Extensive fluctuation 8 Å
 - Rapid dynamics

No difference between guests in average

Problem for optimised structures

Movement of Propionate Groups

Extensive dynamics with 3 minima

 All 8 torsions change on a time-scale of 0.1–1.4 ns⁻¹

All 3 minima visited, but not for all propionates

Problem also for optimised structures

Less for vacuum optimisations

Attempt 1

• Start from C_4 symmetric host

 Keep all structures as symmetric and similar as possible

Use vacuum optimisation

	Vac	Cos	Wat (Cons
MAD	7	9	9	6
MADtr	5	8	9	6
R^2	0.8	0.7	0.6	0.8
τ	0.7	0.7	0.7	0.7

Partly Successful

Partly Successful

 G3 and G5 (with –NMe₃⁺) groups still distorted

Attempt 2

Remove all 4 propionate and 4 bezoate groups

 Reduces solvation energy from -6600 to -300 kJ/mol

Reduced flexibility

• Coulombic ($\epsilon = 80$) correction for +/– series (~23 kJ/mol)

Minimal effect at MM level

- Identical results for 5 perturbations
- 2 kJ/mol difference for 3 perturbations
- The differences come from propionate groups
 - Nearly same performance compared to Exp.

1. Introduction

2. DFT Optimisation

3. DLPNO-CCSD(T)

4. MD snapshots

Method

Approach suggested by Grimme
 Chem Eur J 18(12)9955

\[
\Delta G_{bind} \cdot Optimise structures with TPSS-D3/def2-SV(P)
\]

= E_{DFT}

+

Edisp

+

 $\Delta G_{\rm solv}$

+

 $\Delta G_{\rm freq}$

 Single-point TPSS/def2-QZVP' No counter-poise correction

• DFT-D3

Becke–Johnson damping and 3rd-order terms

• COSMO-RS solvation energy from BP/TZVP in vacuum and in COSMO($\varepsilon = \infty$)

 ZPE, entropy & thermal corrections from HF-3c optimisation & frequency calculation
 Rigid-rotor harmonic-oscillator ideal-gas approximation low-lying modes with free-rotor approximation

Rigid Interaction Energies

 Results strongly stabilised when using *rigid interaction energies* i.e. with the geometry of the complex

• $E_{\text{bind}} = E (HG@HG) - E(H@HG) - E(G@HG)$

 Relaxation energy of guests 0–8 kJ/mol for G2, G4–G6 G1 & G3 13–37 kJ/mol Deteriorates the results

Reduces the effect of host flexibility

Four sets

• Fully charged hosts (199–228 atoms)

Neutralised hosts

 DLPNO-CCSD(T) calculations on DFT structures neutralised hosts

> MD snapshots for neutralised host

DFT Results

 Charged host
 Large variation in DFT binding energy -1062 to +973 kJ/mol

Compensated by solvation energy -906 to +1156

Neutral host
 Less variation in DFT energy
 –72 to +30 kJ/mol

Also solvation energy 62–197 kJ/mol

Sum shows small correlation with Exp. (0–0.4)

DFT Results

Total Energies

Poor results

 $E_{\rm dft}$

disp

All binding energies 41–88 kJ/mol too positive

• MADtr = 18–27 kJ/mol

Sometimes Strange Structures

G1 carboxylate inside host
G3 & G5 –NMe₃ partly inside
G6 also too deep

Structure Problems

 More distorted than charged hosts

All distorted, except G4

OAMe structures

G4 does not bind

G1 carboxylate still inside host

OAMe structures

G1 & G6 less distorted

G2 more distorted

OAH vs. OAMe Differences

• G2 upright in OAMe

• G3 & G5 –NMe₃ more inside in OAH

• G6 more inside in OAH 1. Introduction

2. DFT structures

3. DLPNO-CCSD(T)

4. MD snapshots

DLPNO-CCSD(T) Calculations • Tried to improve the DFT-D3 results with DLPNO-CCSD(T) calculations Neese et al. J Chem Theory Comput 2011, 7 (2011) 33 Tight PNO thresholds

- $\Delta G_{\rm bind}$
- = E_{DFT}
- +
- E_{disp}
- +
- $\Delta G_{\rm solv}$
- + ∆G_{freo}

• Full complex (159–188 atoms)

 ΔG_{bind}

 $E_{CCSD(T)}$

+

 $\Delta G_{\rm solv}$

 $\Delta G_{\rm free}$

- Counter-poise corrections
 - CBS extrapolation with def2-SVP and def2-TZVP TZ→QZ on way
- Br in G4 treated by ZORA

 CCSD(T) replaced the TPSS/def2-QZVP'+DFT-D3 energies

DLPNO-CCSD(T) Results

 Quite similar to DFT results -7 to +11 kJ/mol difference MAD = 5 kJ/mol

 Much less than in SAMPL4 LCCSD(T)+PMISP 24–60 kJ/mol Charged host?

DLPNO-CCSD(T) Results

• Reproduce Exp equally poorly MADtr = 17-32 kJ/mol $R^2 = 0.4-0.5$

Same DFT structures

1. Introduction

2. DFT structures

3. DLPNO-CCSD(T)

4. MD snapshots

Structures from MD

 $\Delta G_{\rm bind}$

= E_{DFT}

+ E_{disp}

+ ΔG_{solv}

+ ∆G_{freo} Run 10 ns MD simulation
 of each complex with MM

Took 10 snapshots

Optimised with HF-3c

 TPSS/def2-QZVP' DFT-D3 BJ 3rd-order dispersion COSMO-RS solvation energy (BP/TZVP) HF-3c ZPE, entropy & thermal corrections (same as DFT-opt)

Variation of binding free energies

 Restricted variation for most guests; 3–15 kJ/mol ⇒ Standard Error = 0.3–1.4 kJ/mol

Sometimes a one outlier

G6 large variation (28–52 kJ/mol; SE 3–5 kJ/mol)

• G4 bimodal in OAH

Structures different (NOAH)

G3 much more outside

G5 much more outside

 G6 sometimes other orientation

Structures different (NOAMe)

• G1 less inside

• G3 & G5 rather similar

 G4
 forced inside in MD and stayed there Distorted host

Results

• *R*² much worse 0.0 to -0.1

 partly owing to forced binding of G4 (host distortion *E* missing)

MAD better
 14–17 kJ/mol

G3 & G5 too strong

G1 too weak

	NOAH]	NOAMe	MDH	MDMe
MADtr	18	27	17	14
R^2	0.34	0.37	-0.02	-0.08

Conclusions MD

Promising approach

More black-box

Gives a precision of 1 (-5) kJ/mol

 Trying better methods for optimisation

Improved Optimisation Methods

-• MD snapshot

Vacuum opt.

- • COSMO opt.

COSMO + 4 Water

Conclusions

Poor results

- Partly owing to the use of vacuum structures
 - Possibly additional un-recovered problems (unexperienced PhD)
 - Flexibility a major problem
 - Optimisation time-consuming (~1 month)
 - Need much nursing
 - MD approach may solve some problems

Worth Investigating

• Alternative QM/MM FEP with MM reference potential

 Latest results with SAMPL4 data

QM systems of 158–224 atoms

NOA and PM6-DH2X

 • 720 000 QM calculations are needed for convergence to 1 kJ/mol

• DFT optimisation
 ~200 QM calculations
 1/4000 !

Acknowledgements

Octav Caldararu Martin Olsson

Dr. Christoph Riplinger Prof. Frank Neese

Swedish Research Council

Lunarc HPC2N

Submitted Data

We submitted three sets of data 1. Charged host with DFT 2. Neutral host with DFT 3. Neutral host with DLPNO-CCSD(T)//DFT

- OAH, not rigid energies (missing at submission time)
- With guest relaxation energies (suboptimal)
 - Error in isolated G2 energy
 - MD not finished in time
 - No Coulombic correction

MM-MD structures

G1 carboxylate actually inside host

MM-MD structures OAMe

G1 carboxylate more exposed

• G2 more up-right

LCCSD(T)-PMISP

 Tried to improve the DFT-D3 results with Local CCSD(T) calculations Hampel & Werner, J Chem Phys 104 (1996) 6286

Employing the PMISP approach
 Polarised Multipolar Interactions with Supermolecular Pairs
 Söderhjelm & Ryde, J Phys Chem A 113 (2009) 617

 Based on the Cos structures solvation energies, and thermal corrections

 Replaced the TPSS/def2-QZVP'/TZVP+DFT-D3 energies with LCCSD(T) energies

LCCSD(T) calculations

Together with Prof. Ricardo Mata, Göttingen

cc-pVTZ basis set

 Extrapolated to basis-set limit at conventional MP2 level with aug-cc-pVTZ and aug-cc-pVQZ basis sets and n⁻³ scheme

Full counter-poise corrections

Density fitting

Pipek–Mezey localisation

PMISP $E_{tot} = E_{ele} + E_{ind} + E_{other}$ $E_{other} =$ $\sum c_{j}(E_{QM}(BA_{j}) - E_{ele}(BA_{j}) - E_{ind}(BA_{j})$

MM (NEMO) electrostatics and induction

QM calculations on Guest (B) and Host fragments (A_j) (to get multipole expansion and polarisabilities)

and all BA_i pairs (to get dispersion, repulsion, penetration, CT, ... = "other")

PMISP details

 Multipoles up to octupoles and anisotropic polarisabilities in atomic centres and all bond midpoints

Calculated at the MP2/cc-pVTZ level

 Interaction energies between guest and host calculated for guest+fragment at the LCCSD(T)/CBS level

 Many-body effects treated at the MM (NEMO) level with the multipoles and polarisabilities

Fractionation

 Host fractionated according to the MFCC approach Molecular Fractionation with Conjugate Caps

Adapted to the complicated host

• 24 fragments
32 conjugate fragments
4 doubly-conjugate fragments

Results

- CCSD(T) correction rather large and negative –27 (Hx) to –54 (mClBz) kJ/mol
 - All quality measures significantly worse
 - Constant shift + exaggerate differences
 - Submitted absolute affinities with one outlier

Conclusions

MM–FEP acceptable results Best
Not much better than for proteins MAD = 6.0 kJ/mol for 91 transformations in 10 proteins
No difference between RESP & BCC charges

OFT-FEP has severe convergence problems
 Poor

Optimised DFT intermediate performance

Severe problems with flexibility
 Hard to improve

LCCSD(T) possible for ligand binding with PMISP

But poor results – why?

Intermediate

Worst

Structures different (NOAH)

• G1 deeper

• G2 similar

 G3 much more outside

G4 similar

 G5 much more outside

> • G6 other orientation

Structures different (NOAMe)

- G1 less inside
 - G2 similar
 - G3 rather similar
 - G4 forced inside
 - G5 similar
 - G6 similar

