Binding free energy: What did you learn?

Florentina Tofoleanu National Institutes of Health National Heart, Lung, and Blood Institute

D3R Workshop, La Jolla, March 11th 2016

Free energy calculation procedure

We iterated the binding free energy calculation step:

- 3 times for CBClip systems
- 3-12 times for OAH/OAMe systems

The Double-Decoupling Method (DDM)

Gilson, M. K., Given, J. A, Bush, B. L. & McCammon, J. A. Biophys. J. 72, 1047–1069 (1997) Boresch, S. et al., J. Phys. Chem. B. 9535–9551 (2003)

Ionic concentration

Na₃PO₄ ionic concentrations used experimentally:

- 20 mM @ pH 7.4 for CBClip
- 10 mM @ pH 11.5 for G1-G5 in OAH/OAMe G1-G5
- 50 mM @ pH 11.5 for G6 in OAH/OAMe

By using the ionic strength, we translated them into NaCl solutions:

- 50 mM NaCl
- 25 mM NaCl
- 165 mM NaCl

TI + Docking*

*Submission with the lowest RMS

BAR + Docking

TI + MD

BAR + MD

G3: consistently over-estimating the binding energy

What went right: G1

Predicted binding pose

	Binding affinity (kcal/mol)
Experiment	-5.84
Calculation (TI + DOCK)	-7.61 (0.75)

What went right: G9

Predicted binding pose

	Binding affinity (kcal/mol)
Experiment	-7.40
Calculation (TI + DOCK)	-7.85 (0.90)

What went wrong: G3

	Binding affinity (kcal/mol)
Experiment	-4.02
Calculation (TI + DOCK)	-9.78 (2.36)

What went wrong: G8

	Binding affinity (kcal/mol)
Experiment	-6.18
Calculation (TI + DOCK)	-2.71 (0.87)

Docking result

Gas phase simulation result

Docking result

Gas phase simulation result

Docking result

Gas phase simulation result

Docking result

Gas phase simulation result

CBClip has an open conformation.

Docking result

Gas phase simulation result

CBClip has a semi-open conformation.

RMS errors of all CBClip submissions

CBClip calculations performed by Dr. Juyong Lee, NIH/NHLBI.

Correlations for CBClip submissions

OAH&OAMe Binding energies

OAH/OAMe and guests

Host: charge -8 Guests: charged & neutral

lons: neutralized & ionic concentration ~ Na₃PO₄

Parameters: ParamChem CGENFF

Explicit solvent

Dry cavity (no water molecules within)

3-12 calculations for each system

K. Vanommeslaeghe, E. Hatcher, C. Acharya, S. Kundu, S. Zhong, J. Shim, E. Darian, O. Guvench, P. Lopes, I. Vorobyov, A. D. MacKerell Jr.,, J. Comput. Chem. 2010, **31**, 671-690

GalaxyDock: Protein-Ligand Docking Program

National Heart, Lung and Blood Institute

W. -H. Shin, J. K. Kim, D. S. Kim, C. Seok, *J. Comput. Chem.* 2013, **34**, 2647

GalaxyDock-HG: Host-Guest Docking

Select three binding poses for each system -> simulate the lowest

National Heart, Lung, and Blood Institute

Neutral G3 & G5

Tetramethyl-ammonium-hydroxide

Distance from QM calculations; courtesy of Frank Pickard

Assessing the guest protonation state in the complex

Binding free energy submissions for OAH

Binding free energies were under-estimated.

No NMR data for G4.

Errors for Binding free energy for OAH

Difference between experimental and each computed value.

Binding free energies were under-estimated. Highest errors for G4.

Best submission: TI, RMS values= 1.36/1.46

Binding free energy submissions for OAMe

Averaged Over all Runs

Errors for Binding free energy for OAMe

Difference between experimental and each computed value.

Binding free energies were over-estimated. Highest errors for G4.

Best submission: BAR, RMS= 0.87, 1.94 kcal/mol

Experimental vs Computational Data

Under-estimating energies

Binding energies were mostly under-estimated.

G4 had consistently high errors with respect to experiment. We suspect that either the Br ion needs re-parametrization, or the system is neutral (unlikely).

Comparison with others: OAH

Comparison with others: OAMe

In cavity vs Atop the cavity

OAH

 $\Delta G = -10.541 \text{ kcal/mol}$

 $\Delta G = -6.4 \text{ kcal/mol}$

Why did we get the worst results for G4?

Initial parametrization

QM calculation

Lonepair addition*

Analyzing only the charged species

OAH	TI: -7.84 -> -4.30 (kcal/mol) BAR: -4.89 -> -3.84 (kcal/mol)	Experimental value: -9.38 kcal/mol
OAMe	TI: -9.95 ->-0.08 (kcal/mol) BAR: -10.54 -> 1.55 (kcal/mol)	Experimental value: -2.38 kcal/mol

*Parameters from Alex MacKerell's group

Br is inside the cavity -> ΔG is more positive

OAH, G4+lonepair

Br is inside the cavity -> ΔG is more positive

Take-home messages

- CBClip: lowest errors for **small/rigid guests**
- Parametrization dictated the **open/close state** of CBClip
- **Ionic concentration** is important
- Treatment of **halogens** is important
- Further analysis of hydration

Acknowledgements

- Juyong Lee NIH/NHLBI
- Frank Pickard NIH/NHLBI
- Gerhard König NIH/NHLBI
- Jing Huang University of Maryland
- Chaok Seok Seoul National University

- Tim Miller NIH/NHLBI
- Richard Venable NIH/NHLBI

• Bernard Brooks

