
The Molecular Sciences Software Institute

Cecilia Clementi, T. Daniel Crawford, Robert Harrison,
Teresa Head-Gordon, Shantenu Jha*, Anna Krylov,

Vijay Pande, and Theresa Windus

http://molssi.org
D3R

23 August, 2019

 1

http://molssi.org

• Project (start date of August 1st, 2016) funded by the National
Science Foundation.

• Collaborative effort by Virginia Tech, Rice U., Stony Brook U.,
U.C. Berkeley, Stanford U., Rutgers U., U. Southern California,
and Iowa State U.

• Total budget of $19.42M for five years, potentially renewable to
ten years.

• Joint support from numerous NSF divisions: Advanced
Cyberinfrastructure (ACI), Chemistry (CHE), Division of Materials
Research (DMR), Office of Multidisciplinary Activities (OMA)

• Designed to serve and enhance the software development efforts
of the broad field of computational molecular science.

!2

The Molecular Sciences Software Institute
(MolSSI)

The Molecular Sciences Software Institute

MolSSI: Structure, Functioning and
Dynamics

 3

The Molecular Sciences Software Institute
(MolSSI)

!4

Software Scientists

Board of Directors

Science & Software
Advisory Board

Community
Software Fellows

Dev Team
#1 Dev Team

#2

Dev Team
#3

The Molecular Sciences Software Institute
(MolSSI)

!5

Software Scientists

Board of Directors

Science & Software
Advisory Board

Community
Software Fellows

Dev Team
#1 Dev Team

#2

Dev Team
#3

The MolSSI Software Scientists (MSSs)

• A team of ~12 software engineering experts, drawn both from newly
minted Ph.D.s and established researchers in molecular sciences,
computer science, and applied mathematics.

• Dedicated to multiple responsibilities:

• Developing software infrastructure and frameworks;

• Interacting with CMS research groups and community code
developers;

• Training and Education Mission (summer schools, bootcamps..)

• Serving as mentors to MolSSI Software Fellows;

• Working with industrial, national laboratory, and international
partners;

Approximately 50% of the Institute’s budget will directly support the
MolSSI Software Scientists.

!6

The Molecular Sciences Software Institute
(MolSSI)

!7

Software Scientists

Board of Directors

Science & Software
Advisory Board

Community
Software Fellows

Dev Team
#1 Dev Team

#2

Dev Team
#3

The MolSSI Software Fellows (MSFs)

• A cohort of ~16 Fellows supported simultaneously – graduate students
and postdocs selected by the Science and Software Advisory Board from
research groups across the U.S.

• Fellows will work directly with both the Software Scientists and the
MolSSI Directors, thus providing a conduit between the Institute and the
CMS community itself.

• Fellows will work on their own projects, as well as contribute to the
MolSSI development efforts, and they will engage in outreach and
education activities under the Institute guidance.

• Funding for MolSSI Software Fellows will follow a flexible, two-phase
structure, providing up to two years of support.  

Approximately 25% of the Institute’s budget will directly support the
MolSSI Software Fellows.

!8

The Molecular Sciences Software Institute
(MolSSI)

!9

Software Scientists

Dev Team
#1 Dev Team

#2

Dev Team
#3

Community
Software Fellows

Board of Directors

Science & Software
Advisory Board

The Molecular Sciences Software Institute
(MolSSI)

!10

Software Scientists

Board of Directors

Science & Software
Advisory Board

Community
Software Fellows

Dev Team
#1 Dev Team

#2

Dev Team
#3

The MolSSI Community

!11

Community Codes
SSE/SSI

Industry

International Partners

National Labs

NSF Supercomputing
Centers & XSEDE

MolSSI Community

The MolSSI Board of Directors

!12

International
Engagement

Laboratory, Industrial,
& Academic Outreach

& Education

Parallel Computing
& Emerging
Technologies

Code and Data
Interoperability

 Software Engineering
 Process, Frameworks

and Infrastructure

Quantum Chemistry
and Materials

Molecular
Simulation

Director

Board of Directors

The Molecular Sciences Software Institute
(MolSSI)

!13

Software Scientists

Board of Directors

Science & Software
Advisory Board

Community
Software Fellows

Dev Team
#1 Dev Team

#2

Dev Team
#3

“High-Performance and Cloud Computing for Adaptive Binding Free Energy Calculations: A Case
Study"

Middleware Building Blocks for Workflow Systems

Shantenu Jha
Rutgers University and Brookhaven National Laboratory

http://radical.rutgers.edu

http://radical.rutgers.edu

• Middleware Building Blocks for Workflow Systems

• Ensemble Computational Model
• System & performance sensitive components versus user-facing component

• Building Blocks for Workflow Systems for Adaptive Ensembles
• RADICAL-Cybertools: RADICAL-Pilot and Ensemble ToolKit (EnTK)
• Case Studies

Outline

2

• “All computational problems require workflows”

• “Everyone has a different workflow”

• “The optimization of the end-to-end performance
of a workflow is important (and different..)”

• “Nothing tends so much to the advancement
of knowledge as the application of a new
instrument. The native intellectual powers of
people in different times are not so much the
causes of the different success of their labors, as
the peculiar nature of the means and artificial
resources in their possession” -- Humphrey Davy

Some Statements About Workflows (2019) ….

3

• 1970s: “Business Workflows”, early 1990s: Workflow Management Coalition
• Late 1990’s (Early 2000s): Increased uptake of Scientific WMS

• Grid/Distributed workflows -- driven by LHC
• HPC Workflows (ASCI Program)

• 2001: MyGrid / MyExperiment emphasized provenance and reproducibility,
• Advances in workflow sharing, e.g., Taverna (cross-disciplinary WMS)
• Implementations rely upon changing technologies. Sustainability?

• 2014: DOE ASCR Workflow Modelling Program (Rich Carlson)
• 2019: Approximately 240 computational & data analysis Workflow Systems

• https://s.apache.org/ existing- workflow- systems
• Caveat: Diverse systems; complete - partial; extensible - standalone, …

• “Unwittingly developed” !
• Most workflow users don’t use a “formal” WMS, but “roll their own”

A Brief History of Workflows & Systems

https://s.apache.org/

● Initially workflow management systems provided end-to-end capabilities:
○ “Big Science”; software infrastructure was fragile, missing services
○ Run many times, for many users: amortisation of development overhead

● Workflows aren’t what they used to be
○ HTC important but other design points: automation, sophistication, …
○ The workflow is a manifestation of algorithmic & methodological innovation

● The infrastructure is not what it used to be either!
○ Python ecosystem, e.g., task distribution and coordination systems
○ Apache (big) data stack of analysis tools; container technologies ..

Perspective on Workflows & Systems

5

● Need sustainable ecosystem of both existing and new software components
from which tailored workflow systems can be composed

○ Lower barrier to integration of components
○ Supply (workflow system development) and Demand (workflows) side!

● Separate performance sensitive from application facing components
○ Engineer for design points: Usability vs Functionality vs Scalability

● A systems approach which addresses both technical & social factors
○ Incentivize sharing and collective community capability
○ Enable expert contributions, lower expertise to contribute and use*

* “Which workflow system should I use?” was the most frequently asked question at BW 2017

Status Quo: Workflows & Workflow Systems

6

● Building Block Approach:
○ Principled approach to the architectural design of middleware systems;
○ Applies traditional notion of modularity at the software systems level
○ Enable composability among independent software systems

● The four design principles:
○ Self-sufficient: Implements functionalities; not dependent on other blocks
○ Composable: Caller can compose functionalities from independent BB
○ Interoperable: Usable in diverse system without semantic modification
○ Extensible: Building block functionality and entities can be extended

Middleware Building Blocks for Workflow Systems

7

Middleware Building Blocks for Workflow Systems https://arxiv.org/abs/1903.10057

https://arxiv.org/abs/1903.10057

● A BB is a semantically well-defined independent software system, agnostic to
coordination, and communication patterns, and exposed via an API.
○ Stronger (stringent) property than modularity

● BB have well defined state, event, and error models
○ Reduce challenge of composability of independent components

● BB work stand-alone, or integrated with other BB, or with 3rd party software

● Architecturally building blocks require:
○ Stable interfaces & distinction between computation and composition
○ Conversion layers -- multiple representation of the same entity

Building Blocks (BB): Properties

8

• Middleware Building Blocks for Workflow Systems

• Ensemble Computational Model
• System & performance sensitive components versus user-facing component

• Building Blocks for Workflow Systems for Ensemble Computing
• RADICAL-Cybertools: RADICAL-Pilot and Ensemble ToolKit (EnTK)
• Case Studies: Performance, Functionality and Extensibility

Outline

9

10

● Ensemble-based methods necessary, but
not sufficient !

● Adaptive Ensemble-based Algorithms:
Intermediate data, determines next stages

● Adaptivity: How and What
○ Internal data used: Simulation

generated data used to determine
“optimal” adaptation

Adaptive Ensemble Algorithms: Variation on a theme

11

● Ensemble-based methods necessary, but
not sufficient !

● Adaptive Ensemble-based Algorithms:
Intermediate data, determines next stages

● Adaptivity: How and What
○ Internal data used: Simulation

generated data used to determine
“optimal” adaptation

○ External data used, e.g., experimental
or separate computational process.

○ What: Task parameter(s), order, count,
….

Adaptive Ensemble Algorithms: Variation on a theme

Ensemble Simulations at Scale: Challenges

12

● Resource Management for O(105-6) tasks --
each is independent executing program!
○ Exascale ~O(106-9)

● Application requirements and resource
performance must be dynamic
○ Abstraction of static perf. is inadequate!
○ Implications on perf. portability & scaling

● Execution Model of heterogeneous tasks on
heterogeneous and dynamic resources.
○ Early-binding: A->B->C->D
○ Late-binding: C->B->A->D

Ensemble Simulations at Scale: Challenges

13

● Resource Management for O(105-6) tasks --
each is independent executing program!
○ Exascale ~O(106-9)

● Application requirements and resource
performance must be dynamic
○ Abstraction of static perf. is inadequate!
○ Implications on perf. portability & scaling

● Execution Model of heterogeneous tasks on
heterogeneous and dynamic resources.

● Adaptive Ensemble Algorithms: Encoding
algorithms that express adaptivity, even
statistically (“approximately”)?
○ Managing interactions (coupling) between

tasks
○ …..

Outline

14

• Middleware Building Blocks for Workflow Systems

• Ensemble Computational Model
• System & performance sensitive components versus user-facing component

• Building Blocks for Workflow Systems for Adaptive Ensembles
• RADICAL-Cybertools: RADICAL-Pilot and Ensemble ToolKit (EnTK)
• Case Studies: Adaptive Sampling and Adaptive Ensemble

Developing Workflow Tools Using Building Blocks

RADICAL-Cybertools: Building Blocks for Workflows

Developing Workflow Tools Using Building Blocks

RADICAL-Pilot: Execution Model

RADICAL-Pilot: Resource Utilization Performance (Titan)

RADICAL-Pilot on Leadership Class Machine

PMI: A Scalable Parallel
Process-Management Interface for
Extreme-Scale Systems, Balaji et al

• Can we get performance agnostic of batch queue
systems and MPI flavour?

• LSF, PBS, SLURM, … ?
• MVAPICH, … MPI flavours?

• PMI-X: Process Management Interface for EXascale
https://github.com/pmix/pmix/wiki

• PRRTE: PMI-X Reference RunTime
Environment https://github.com/pmix/prrte

• PMI used by MPI implementations, batch system
• Private DVM, concurrent tasks
• Pros: heterogeneous tasks (as with JSRUN),

(potentially) fast, portable
• Cons: Emerging official support

https://github.com/pmix/pmix/wiki
https://github.com/pmix/prrte

RADICAL-Pilot on Leadership Class Machine

• Can we get performance agnostic of batch queue
systems and MPI flavour?

• LSF, PBS, SLURM, … ?
• MVAPICH, … MPI flavours?

• PMI-X: Process Management Interface for EXascale
https://github.com/pmix/pmix/wiki

• PRRTE: PMI-X Reference RunTime
Environment https://github.com/pmix/prrte

• PMI used by MPI implementations, batch system
• Private DVM, concurrent tasks
• Pros: heterogeneous tasks (as with JSRUN),

(potentially) fast, portable
• Cons: Emerging official support

https://github.com/pmix/pmix/wiki
https://github.com/pmix/prrte

● Ensemble-Toolkit (EnTK): Promote ensembles
as a first-class programming and execution entity.
○ (i) Facilitate expression of ensemble based

applications, (ii) manage complexity of
resource acquisition, and (iii) task execution.

● Architecture:
○ User facing components (blue); Workflow

management components (purple); Workload
management components (red) via runtime
system (green)

● PST Programming Model:
○ Task: an abstraction of a computational process

and associated execution information
○ Stage: a set of tasks without dependencies,

which can be executed concurrently
○ Pipelines: a list of stages, where stage “i” can

be executed after stage “i−1”

EnTK: Building Block for Ensemble based Applications

Software Systems Challenge: Extensibility & Performance

Middleware Building Blocks for Workflow Systems https://arxiv.org/abs/1903.10057

https://arxiv.org/abs/1903.10057

Case Study: Advanced Sampling

ExTASY (MSM) vs Conventional MD

High-Throughput Binding Affinity Calculator

Advantage of Adaptive Ensemble Algorithms

27

● Original study GSK and UCL
○ 16 drug candidates, BRD4 inhibitor

● Non-adaptive implementation of ESMACS
and TIES protocols at scale on average:
○ ESMACS 10K core-hours
○ TIES 25K core-hours

● Millions of candidates to “hits” to leads
● Typical lead optimization involves 10,000

small molecule (drug) candidates
○ 250 Million Core Hours!!

● Without specialized tools using building
blocks, otherwise sequential & separate

[1] S. Wan, A. P. Bhati, S. J. Zasada, I. Wall, D. Green, P.
Bamborough, and P. V. Coveney. Rapid and reliable
binding affinity prediction of bro- modomain inhibitors: a
computational study. J. Chem. Theory Comput.,
13(2):784–795, 2017.

[2] J. Dakka et al., "Enabling Trade-offs Between Accuracy
and Computational Cost: Adaptive Algorithms to Reduce
Time to Clinical Insight," 2018 18th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing
(CCGRID), Washington, DC, USA, 2018, pp. 572-577.
doi:10.1109/CCGRID.2018.00005

Advantage of Adaptive Ensemble Algorithms

28

● Original study GSK and UCL
○ 16 drug candidates, BRD4 inhibitor

● Non-adaptive implementation of ESMACS
and TIES protocols at scale on average:
○ ESMACS 10K core-hours
○ TIES 25K core-hours

● Millions of candidates to “hits” to leads
● Typical Lead Optimization involves 10,000

small molecule (drug) candidates
○ 250 Million Core Hours!!

● Without specialized tools using building
blocks, otherwise sequential & separate

● Chemical space of drug design in
response to mutations very large.
10K -100K mutations; too large for
HPC simulations alone!

● Develop methods that use: (i)
simulations to train machine
learning (ML) models to predict
therapeutic effectiveness; (ii) use
ML models to determine which
drug candidates to simulate.

INSPIRE: Integrated (ML-MD) Scalable Prediction of REsistance

A collaboration between BNL/Rutgers (Jha), Chicago (Stevens), Memorial Sloan Kettering (Chodera), UCL (Coveney)

Early Science Project on NSF Frontera. DD Award on Summit.

Building Blocks as Software Systems

● Different levels / types of Integration
○ Domain Specific Workflows (DSW)
○ End-to-end Workflow Systems
○ Workload management systems
○ General purpose computing systems

● Can the community (developers, facilities,
users..) provide Building Blocks for Workflow
Systems as components of “Open Workflow
Systems” ?

○ Not every scenario, but the most common
and HPC relevant ..

● Many advances in workflows, but many challenges in workflow systems
○ Landscape is changing in many ways; also need focus on systems developers

● RADICAL-Cybertools: BB for Ensemble Computational Model
○ Supports a range of functionality, use cases and platforms
○ RCT designed for separation of performance and functional extensibility

● BB Approach: Promise but many open questions
○ Qualitative: Need more formally rigorous definitions building block? Differentiability?
○ Quantitative: Develop a hypothesis & validation of how/when/if BB are more scalable

and sustainable than monolithic approaches?
○ Best Practice: A formal understanding of granularity, type and how domain specific?

● BB for Workflow Systems as components of community “Open Workflow” ?

○ A plausible outcome from a systems approach ?
○ Social and technical issues, also functional composition address “which” to use?

Summary

31

Thank you!

